Lighter Structural Clay Ceramics Manufactured with Marble Cutting Dust and Paperboard Based Packaging Waste

Article Preview

Abstract:

This work evaluates some preliminary results of adding two kinds of wastes in two characteristics clay mixtures with the aim of producing lighter structural ceramic products. The selected wastes are marble cutting dust and a packaging waste mainly composed by paperboard and polyethylene. In the case of clay mixtures, they are focused to the manufacture of both common and facing bricks. New waste based formulations are proposed on the basis of chemical and mineralogical compositions of clays and wastes and previous experiences in literature. Especial attention is paid to initial carbonate content in the selected clays, since marble waste is almost exclusively formed by calcite. Dynamic sintering tests and technological properties characterization were performed to analyse the feasibility of waste incorporation. Sintering behaviour shows a larger influence of marble dust waste and it is radically changed in the case of clay mixtures for facing products. Technology properties of unfired specimens are in general adequate for the industrial practice. Final technological properties of sintered specimens shows lower density for the new waste bearing products but not unique trends with sintering temperature for another properties as bending strength or water absorption capacity. These properties are mainly conditioned by the sintering behaviour associated to marble dust addition and, thus additional microstructure and mineralogy test would be necessary for a better knowledge of these materials and their optimised formulation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

105-114

Citation:

Online since:

September 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Zhang. Production of bricks from waste materials – A review. Construction and Building Materials 47 (2013) 643-655.

DOI: 10.1016/j.conbuildmat.2013.05.043

Google Scholar

[2] S.P. Raut. R.V. Ralegaonklar. S.A. Mandavgane. Development of sustainable construction material using industrial and agricultural solid waste: A review of waste-create bricks. Construction and Building Materials 25 (2011) 4037-4042.

DOI: 10.1016/j.conbuildmat.2011.04.038

Google Scholar

[3] D. Eliche-Quesada. C. Martínez-García. M.L. Martínez-Cartas. M.T. Cotes-Palomino. L. Pérez-Villrejo. N. Cruz-Pérez. F.A. Corpas-Iglesias. The use of different forms of waste in the manufacture of ceramic bricks. Applied Clay Science 52 (2011).

DOI: 10.1016/j.clay.2011.03.003

Google Scholar

[4] J.A. Cusidó. C. Soriano. Valorizaton of pellets from municipal WWTP sludge in lightweight ceramics. Waste Management 31 (2011) 1372-1380.

DOI: 10.1016/j.wasman.2011.02.003

Google Scholar

[5] Y. Qi. Q. Yue. S. Han. M. Yue. B. Gao. H. Yu. T. Shao. Preparation and mechanism of ultra-lightweight ceramics produced from sewage sludge. Journal of Hazardous Materials 176 (2010) 76-84.

DOI: 10.1016/j.jhazmat.2009.11.001

Google Scholar

[6] S. Raut. R. Ralegaonkar. S. Mandavgane. Utilization of recycle paper mill residue and rice husk ash in production of light weight bricks. Archives of Civil and Mechanical Engineering 13 (2013) 269-275.

DOI: 10.1016/j.acme.2012.12.006

Google Scholar

[7] L. Barbieri. F. Andreola. I. Lancellotti. R. Taurino. Management of agricultural biomass wastes: Preliminary study on characterization and valorisation in clay matrix bricks. Waste Management. 11 (2013) 2307-2315.

DOI: 10.1016/j.wasman.2013.03.014

Google Scholar

[8] I. Demir. M. Serhat Baspinar. M. Orhan. Utilization of kraft pulp production residues in clay brick production. Building and Environment 40 (2005) 1533-1537.

DOI: 10.1016/j.buildenv.2004.11.021

Google Scholar

[9] M. Sutcu. S. Akkurt. The use of recycled paper processing residues in making porous brick with reduced thermal conductivity. Ceramics International 35 (2009) 2625-2631.

DOI: 10.1016/j.ceramint.2009.02.027

Google Scholar

[10] P. Muñoz. M.C. Juárez. M.P. Morales. M.A. Mendívil. Improving the thermal transmittance of single-brick walls built of clay bricks lightened with paper pulp. Energy and Buildings 59 (2013) 171-180.

DOI: 10.1016/j.enbuild.2012.12.022

Google Scholar

[11] H. Bal. Y Jannot. S. Gaye. F. Demeurie. Measurement and modelisation of the thermal conductivity of a wet composite medium: laterite based bricks with millet waste additive. Construction and Building Materials 41 (2013) 586-593.

DOI: 10.1016/j.conbuildmat.2012.12.032

Google Scholar

[12] G. Görhan. O. Simsek. Porous clay bricks manufactured with rice husks. Construction and Building Materials 40 (2013) 390-396.

DOI: 10.1016/j.conbuildmat.2012.09.110

Google Scholar

[13] J. García-Ten. M.J. Orts. A. Saburit. G. Silva. Thermal conductivity of traditional ceramics. Part II: Influence of mineralogical composition. Ceramics International 36 (2010) 2017-(2024).

DOI: 10.1016/j.ceramint.2010.05.013

Google Scholar

[14] D. Betancourt. F. Martirena. R. Day. Y. Díaz. The influence of the addition of calcium carbonate on the energy efficiency of fired clay bricks manufacture. Revista Ingeniería de Construcción 22 (2007) 187-196.

Google Scholar

[15] M.F. Serra. M.F. Acebedo. M.S. Conconi. G. Suarez. E.F. Aglietti. N.M. Rendtorff. Thermal evolution of the mechanical properties of calcareous earthware. Ceramics International 40 (2014) 1709-1716.

DOI: 10.1016/j.ceramint.2013.07.067

Google Scholar

[16] F. Saboya Jr. G.C. Xavier. J. Alexandre. The use of the powder marble by-product to enhance the properties of brick ceramic. Construction and Building Materials 21 (2007) 1950-(1960).

DOI: 10.1016/j.conbuildmat.2006.05.029

Google Scholar

[17] R. Sokolár. L. Vodová. S. Grygarová. I. Stubna. P. Sin. Mechanical properties of ceramic bodies based on calcite waste. Ceramics International 38 (2012) 6607-6612.

DOI: 10.1016/j.ceramint.2012.05.046

Google Scholar

[18] R.J. Galán-Arboledas. A. Merino. S. Bueno. Use of new raw materials and industrial wastes to improve the possibilities of using ceramic materials from Bailén (Jaén. southern Spain). Materiales de Construcción. 63 (2013) 553-568.

DOI: 10.3989/mc.2012.03412

Google Scholar

[19] A. Barba, V. Beltrán, C. Feliu, J. García, F. Ginés, E. Sánchez, V. Sanz, Acción del calor sobre las materias pirmas, in: Materias primas para la fabricación de soportes de baldosas cerámicas, Instituto de Tecnología Cerámica, Castellón, 2002, pp.159-194.

DOI: 10.3989/mc.1972.v22.i146.1426

Google Scholar

[20] L. Sánchez Muñoz, J.B. Carda Castelló, Transformaciones con la temperatura, in: Materias primas y aditivos cerámicos. Enciclopedia Cerámica. Tomo 2. 2, Faenza Editrice Ibérica S.L., Castellón, 2003, pp.88-120.

Google Scholar