Study of the Mechanical Properties of Concrete with Sisal and Polypropylene Fibers

Article Preview

Abstract:

Fiber concretes have been revolutionizing the market, as well as lower operating costs, structurally act. The total or partial replacement of steel with natural fiber reinforced concrete could be an economical way to provide an alternative method to achieve greater security in concrete structures, as well as a way to use materials that are energy efficient, economic and ecological.Sisal fiber reinforcement is promising for use in composite materials, due to their low cost, low density, high strength and specific modulus, without risk to health, readily available in some countries and renewal.We studied four different dosages of concrete: without fiber, with two different types of polypropylene (PP) fibers and with sisal fiber. Consistency of fresh concrete, bulk density, water absorption, capillary absorption, compressive strength and microstructural properties values of the samples were investigated.Regarding the consistency of fresh concrete, measured by testing Abrams cone, as the results show a substantial difference between the flowability of the concrete without addition of fibers and other dosages with different types of fibers studied. The compressive strength test at 7 and 21 days also shows resistance as early ages performed fiber, while with increasing days of curing, the resistance becomes a reaction product of cement and pozzolanic water have no effect added fiber. Absorption tests and capillary absorption of water, like the above, consistent with the results shown bibliographic polled, the results being higher in both assays for dosages comprised of PP and sisal fibers.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

115-123

Citation:

Online since:

September 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. M. Nogueira-López, Análisis del hormigón reforzado con fibra de lino, Master en arquitectura y ciudad, ETSAG.

Google Scholar

[2] P. C. Mármol-Salazar, Hormigones con fibras de acero. Características mecánicas, Master en ingeniería de estructuras, cimentaciones y materiales, Universidad Politécnica de Madrid, (2010).

Google Scholar

[3] G. Ramakrishna, T. Sundararajan, Impact strength of a few natural fibre reinforced cement mortar slabs: a comparative study, Cement Concrete Comp. 27 (2005) 547-553.

DOI: 10.1016/j.cemconcomp.2004.09.006

Google Scholar

[4] Y. Li, Y.W. Mai, L. Ye, Sisal fibre and its composites: a review of recent developments, Compos. Sci. Technol. 60 (2000) 2037-(2055).

DOI: 10.1016/s0266-3538(00)00101-9

Google Scholar

[5] F. E. Morrissey, R. S. P. Coutts, P. U. A. Grossman, Bond between cellulose fibres and cement, Int. J. Cem. Compos. Lightweight Concr. 7 (1985) 73-80.

DOI: 10.1016/0262-5075(85)90062-4

Google Scholar

[6] D. G. Swift, R. B. L. Smith, The flexural strength of cement-based composites using low modulus (sisal) fibres, Composites 10 (1979) 145-148.

DOI: 10.1016/0010-4361(79)90288-x

Google Scholar

[7] T. J. Bessel, S. M. Mutuli, The interracial bond strength of sisal cement composites using a tensile test, J. Mater. Sci. Lett. l (1982) 244-246.

DOI: 10.1007/bf00727846

Google Scholar

[8] H. Baluch, Y. N. Ziraba, A. K. Azad, Fracture characteristics of sisal fibre reinforced concrete, Int. J. Cem. Compos. Lightweight Concr. 9 (1987) 157-168.

DOI: 10.1016/0262-5075(87)90049-2

Google Scholar

[9] D. G. Swift, R. B. L. Smith, Sisal cement composites as low-cost construction materials, Appropriate Tech. 6 (1979) 6-8.

Google Scholar

[10] H. E. Gram, Durability of natural fibres in concrete, Swedish Cement and Concrete Research Inst., Stockholm, Sweden, (1983).

Google Scholar

[11] R. S. P. Coutts, P. G. Warden, Sisal pulp reinforced cement mortar, Cement Concrete Comp. 14 (1992) 17-21.

DOI: 10.1016/0958-9465(92)90035-t

Google Scholar

[12] F. A. Silva, B. Mobasher, C. Soranakom, R. D. T. Filho, Effect of fiber shape and morphology on interfacial bond and cracking behaviors of sisal fiber cement based composites, Cement Concrete Comp. 33 (2011) 814-823.

DOI: 10.1016/j.cemconcomp.2011.05.003

Google Scholar

[13] F. A. Silva, R. D. T. Filho, J. A. M. Filho, E. M. R. Fairbairn, Physical and mechanical properties of durable sisal fiber–cement composites, Constr. Build. Mater. 24 (2010) 777-785.

DOI: 10.1016/j.conbuildmat.2009.10.030

Google Scholar

[14] L. C. Roma Jr., L. S. Martello, H. Savastano Jr., Evaluation of mechanical, physical and thermal performance of cement-based tiles reinforced with vegetable fibers, Constr. Build. Mater. 22 (2008) 668-674.

DOI: 10.1016/j.conbuildmat.2006.10.001

Google Scholar

[15] R.M. de Gutiérrez, L.N. Díaz, S. Delvasto, Effect of pozzolans on the performance of fiber-reinforced mortars, Cement Concrete Comp. 27 (2005) 593-598.

DOI: 10.1016/j.cemconcomp.2004.09.010

Google Scholar

[16] R. D. T. Filho, K. Ghavami, M. A. Sanjuán, G. L. England, Free, restrained and drying shrinkage of cement mortar composites reinforced with vegetable fibres, Cement Concrete Comp. 27 (2005) 537-546.

DOI: 10.1016/j.cemconcomp.2004.09.005

Google Scholar

[17] M. Barreda, C. Iaiani, J. D. Sota, Hormigón reforzado con fibras de polipropileno: tramo experimental de un pavimento de hormigón, Jornadas SAM 2000-IV Coloquio Latinoamericano de Fractura y Fatiga, 1145-1150.

DOI: 10.4995/thesis/10251/10360

Google Scholar

[18] J. A. Sullcahuamán, C. A. Fuentes Rojas, M. Mateo Ramos, A. V. Pastor Revoredo, O. N. Castro Mandujano, J. S. Zavaleta Cortijo, Materiales compuestos de cemento, papel reciclado, quitosano y refuerzo de fibras de sisal químicamente modificadas, 8º Congreso Iberoamericano de Ingeniería Mecánica, Perú, (2007).

DOI: 10.5944/bicim2022.090

Google Scholar

[19] F. Muñoz Cebrián, Comportamiento mecánico del hormigón reforzado con fibra de polipropileno multifilamento: Influencia del porcentaje de fibra adicionado, Taller proyecto final de grado en materiales avanzados, Universidad Politécnica de Valencia, (2010).

DOI: 10.18002/10612/1759

Google Scholar

[20] V. Águila Higuero, Características físicas y mecánicas de hormigones reforzados con fibras de: vidrio, carbono y aramida, Master universitario en ingeniería de las estructuras, cimentaciones y materiales, Universidad Politécnica de Madrid, (2010).

DOI: 10.14483/23448393.18852

Google Scholar

[21] S. Popovics, Concrete Materials: Properties, Specifications, and Testing, second ed., Noyes Publications, USA, (1992).

Google Scholar

[22] A. C. H. Barreto, D. S. Rosa, P. B. A. Fechine, S. E. Mazzetto, Properties of sisal fibers treated by alkali solution and their application into cardanol-based biocomposites, Compos. Part A-Appl. S. 42 (2011) 492-500.

DOI: 10.1016/j.compositesa.2011.01.008

Google Scholar

[23] UNE-EN 12390-1: 2013, Ensayos de hormigón endurecido. Parte 1: Forma, dimensiones y otras características de las probetas y moldes.

Google Scholar

[24] UNE-EN 1008: 2007, Agua de amasado para hormigón. Especificaciones para la toma de muestras, los ensayos de evaluación y aptitud al uso incluyendo las aguas de lavado de las instalaciones de reciclado de la industria del hormigón, así como el agua de amasado para hormigón.

DOI: 10.3989/mc.1972.v22.i145.1440

Google Scholar

[25] UNE 83951: 2008, Durabilidad del hormigón. Aguas de amasado y aguas agresivas. Toma de muestras.

Google Scholar

[26] UNE-EN 12390-2: 2009, Ensayos de hormigón endurecido. Parte 2: Fabricación y curado de probetas para ensayos de resistencia.

Google Scholar

[27] UNE-EN 12350-2: 2009, Ensayos de hormigón fresco. Parte 2: Ensayo de asentamiento.

Google Scholar

[28] UNE-EN 12390-7: 2009, Ensayos de hormigón endurecido. Parte 7: Densidad del hormigón endurecido.

DOI: 10.3989/mc.1969.v19.i133.1602

Google Scholar

[29] UNE-EN 480-5: 2006, Aditivos para hormigones, morteros y pastas. Métodos de ensayo. Parte 5: Determinación de la absorción capilar.

DOI: 10.3989/ic.1982.v34.i340.2107

Google Scholar

[30] Instrucción de hormigón estructural (EHE-08). Ministerio de Fomento. Gobierno de España.

Google Scholar

[31] UNE-EN 12390-3: 2009, Ensayos de hormigón endurecido. Parte 3: Determinación de la resistencia a compresión de probetas.

Google Scholar

[32] Portland cement association. PCA R&D Serial No. 21.

Google Scholar