Manufacture of Ceramic Bodies by Using a Mud Waste from the TiO2 Pigment Industry

Article Preview

Abstract:

The main objective of this paper is focused in the use of waste generated by the TiO2 pigment industry, ilmenite mud (MUD), on the production of ceramic bodies. These ceramic bodies were produced from mixtures of a commercial red stoneware mixture (RSM) with different concentrations of mud (3, 5, 7, 10, 30 and 50 wt%). The samples were sintered to simulate a fast-firing process. The sintering behaviour of the fired samples was evaluated according to ISO rules by linear shrinkage, water absorption and porosity measurements. Both green powder and fired samples were characterised by means of X-ray diffraction (XRD), differential scanning calorimetry (DSC/TG), field emission scanning electron microscopy (FESEM) and bending strength measurements. Moreover, the activity concentrations of radionuclides were measured by high-resolution low-background gamma spectrometry, because this mud is a NORM (Naturally Occurring Radioactive Material) waste. Finally, the TCLP leaching test (Toxicity Characteristic Leaching Procedure, USEPA) was performed to assess the risks of use tiles from an environmental perspective. The results demonstrated that MUD can be successfully valorisated in the manufacture of red stoneware ceramic bodies with similar, or even better technological properties than commercial materials used currently.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

75-85

Citation:

Online since:

September 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Liu, C. Lin, Y. Wu, Characterization of red mud derived of from a combined Bayer process and bauxite calcination method, J. Hazard. Mater. 146 (2007) 255–261.

DOI: 10.1016/j.jhazmat.2006.12.015

Google Scholar

[2] M. Romero, A. Andrés, R. Alonso, J. Viguri, J.M. Rincón, Sintering behaviour of ceramic bodies from contaminated marine sediments, Ceram. Int. 34 (2008) 1917–(1924).

DOI: 10.1016/j.ceramint.2007.07.002

Google Scholar

[3] N. Quijornaa, A. Coza, A. Andresa, C. Cheeseman, Recycling of Waelz slag and waste foundry sand in red clay bricks, Res. Con. Rec. 65 (2012) 1-10.

DOI: 10.1016/j.resconrec.2012.05.004

Google Scholar

[4] M.J. Gázquez, J.P. Bolívar, R. García-Tenorio, F. Vaca, Physicochemical characterization of raw materials and co-products from the titanium dioxide industry, J. Hazard. Mater. 166 (2009) 1429–1440.

DOI: 10.1016/j.jhazmat.2008.12.067

Google Scholar

[5] M.J. Gázquez, J. Mantero, J.P. Bolívar, Physico-chemical and radioactive characterization of TiO2 undissolved mud for its valorization, J. Hazard. Mater. 191 (2011) 269–276.

DOI: 10.1016/j.jhazmat.2011.04.075

Google Scholar

[6] UNSCEAR: Sources, effects and risks of ionizing radiation. Report to the General Assembly, with annexes. United Nations, New York, (1988).

DOI: 10.18356/55345362-en

Google Scholar

[7] L. Pérez-Villarejo, D. Eliche-Quesada, F. J. Iglesias-Godino, C. Martínez-García, F. A. Corpas-Iglesias, Recycling of ash from biomass incinerator in clay matrix to produce ceramic bricks. J. Environ. Manage. 95 (2012) S349-S354.

DOI: 10.1016/j.jenvman.2010.10.022

Google Scholar

[8] M.J. Gázquez, Characterization and recovery of waste generated in the industry for the production of titanium dioxide (Caracterización y valorización de residuos generados en la industria de producción de dióxido de titanio). University of Huelva. (2010).

Google Scholar

[9] M. Dondi, C. Zanelli, M. Raimondo, G. Guarini, D. Dalle Fabbriche, A. Agostini, Recycling titania slag insolute residue (Tionite, ) in clay bricks. Ceram. Int., 36 (2010) 2461-2467.

DOI: 10.1016/j.ceramint.2010.08.007

Google Scholar

[10] W. Hajjaji, G. Costa, C. Zanelli, M.J. Ribeiro, M.P. Seabra, M. Dondi, J.A. Labrincha, An overview of using solid wastes for pigment industry. J. Am. Ceram. Soc., 32 (2012) 753-764.

DOI: 10.1016/j.jeurceramsoc.2011.10.018

Google Scholar

[11] M. Contreras, M.J. Gázquez, I. García-Díaz, F.J. Alguacil, F.A. López, J.P. Bolívar, Valorization of ilmenite mud waste for the manufacturing of Sulfur polymer cements, J. Environ. Manage. 128 (2013) 625-630.

DOI: 10.1016/j.jenvman.2013.06.015

Google Scholar

[12] ISO 10545-3: 1997, Ceramic tiles. Part 3: Determination of water absorption, apparent porosity, apparent relative density and bulk density.

DOI: 10.3403/30321734

Google Scholar

[13] ASTM C373-88: 1999, Standard test method for water adsorption, bulk density, apparent porosity and apparent specific gravity of fired whiteware products.

DOI: 10.1520/c0373-88r06

Google Scholar

[14] EN 843-1: 2006, Advanced technical ceramics. Monolithic ceramics. Mechanical properties at room temperature. Part. I: Determination of flexural strength.

DOI: 10.3403/00483134u

Google Scholar

[15] R.L. Lozano, J.P. Bolívar, E.G. San Miguel, R. García-Tenorio, M.J. Gázquez, An accurate method to measure alpha-emitting natural radionuclides in atmospheric filters: application in two NORM industries, Nucl. Instrum. Meth. A. 659 (2011).

DOI: 10.1016/j.nima.2011.08.006

Google Scholar

[16] U.S. EPA, Test Methods for Evaluating Solid Waste Physical Chemical Methods, SW-846, U.S. Environmental Protection Agency, Washington, DC, (1997).

Google Scholar

[17] T. Chernet, Applied mineralogical studies on Australian sand ilmenite concentrate with special reference to its behaviour in the sulphate process, Min. Eng. 12 (1999) 485-495.

DOI: 10.1016/s0892-6875(99)00035-7

Google Scholar

[18] J. Martín-Márquez, J. Ma. Rincón, M. Romero, Effect of microstructure on mechanical properties of porcelain stoneware, J. Am. Ceram. Soc. 30 (2010) 3063–3069.

DOI: 10.1016/j.jeurceramsoc.2010.07.015

Google Scholar

[19] J. Martín-Márquez, J. Ma. Rincón, M. Romero, Effect of firing temperature on sintering of porcelain stoneware tiles, Ceram. Int. 34 (2008) 1867–1873.

DOI: 10.1016/j.ceramint.2007.06.006

Google Scholar

[20] J. Martín-Márquez, A.G. De la Torre, M.A.G.; Aranda, J. Ma. Rincón, M. Romero, Evolution with temperature of crystalline and amorphous phases in porcelain stoneware, J. Am. Ceram. Soc. 92 (2009) 229–34.

DOI: 10.1111/j.1551-2916.2008.02862.x

Google Scholar

[21] L.A. Pérez-Maqueda, V. Balek, J. Poyato, J.L. J. Pérez-Rodríquez, Šubrt, I.M. Bountsewa, I.N. Beckman, Z. Málek, Study of natural and ion exchanged vermiculite by emanation thermal analysis, TG, DTA AND XRD, J. Therm. Anal. Calorim. 71 (2003).

DOI: 10.1007/s10973-005-7462-5

Google Scholar

[22] S.M. Pérez-Moreno, M.J. Gázquez, A.G. Barneto, J.P. Bolívar, Thermal characterization of new fire insulating materials obtained from industrial inorganic wastes from TiO2 industry, Thermochim. Acta. 552 (2013) 114-122.

DOI: 10.1016/j.tca.2012.10.021

Google Scholar

[23] A. De Noni, D. Hotza, V. Cantavella, E. Sanchez. Effect of quartz particle size on the mechanical behaviour of porcelain tile subjected to different cooling rates. J. Eur. Ceram. Soc. 29 (2009) 1039–1046.

DOI: 10.1016/j.jeurceramsoc.2008.07.052

Google Scholar

[24] EN 14411: 2003, Ceramic tiles. Definitions, clasifications, characteristics and marking.

Google Scholar

[25] Office European Comission Report on Radiological Protection - Principles concerning the natural radioactivity of building materials, Radiation Protection 112, for Official Publications of the European Communities, Luxembourg, (1999).

Google Scholar

[26] H. Mabuchi, On the volatility of some polonium, J. Inorg. Nucl. Chem. 25 (1963) 657-660.

Google Scholar

[27] K. Kovler, Radiological constraints of using building materials and industrial by-products, Constr. Build. Mater. 23 (2009) 246-253.

DOI: 10.1016/j.conbuildmat.2007.12.010

Google Scholar

[28] A. Hierro, J.E. Martín, M. Olías, C. García, J.P. Bolivar, Uranium behaviour during a tidal cycle in an estuarine system affected by acid mine drainage, Chem. Geo. 342 (2013) 110-118.

DOI: 10.1016/j.chemgeo.2013.01.021

Google Scholar

[29] U.S. EPA, Test Methods for Evaluating Solid Waste - Physical Chemical Methods, SW-846, U.S. Environmental Protection Agency, Washington, DC, (1997).

Google Scholar