[1]
A. Cadario, B. Alfredsson, Fatigue growth of short cracks in Ti-17: Experiments and simulations, Engineering Fracture Mechanics, 74 (2007) 2293-2310.
DOI: 10.1016/j.engfracmech.2006.11.016
Google Scholar
[2]
C. Cellard, D. Retraint, M. François, E. Rouhaud, D. Le Saunier, Laser shock peening of Ti-17 titanium alloy: Influence of process parameters, Materials Science and Engineering: A, 532 (2012) 362-372.
DOI: 10.1016/j.msea.2011.10.104
Google Scholar
[3]
A. Ebach-Stahl, C. Eilers, N. Laska, R. Braun, Cyclic oxidation behaviour of the titanium alloys Ti-6242 and Ti-17 with Ti–Al–Cr–Y coatings at 600 and 700  °C in air, Surface and Coatings Technology, 223 (2013) 24-31.
DOI: 10.1016/j.surfcoat.2013.02.021
Google Scholar
[4]
M.C. Gean, T.N. Farris, Elevated temperature fretting fatigue of Ti-17 with surface treatments, Tribology International, 42 (2009) 1340-1345.
DOI: 10.1016/j.triboint.2009.04.027
Google Scholar
[5]
Q. -t. LI, Q. -c. LIU, J. -s. SHEN, Experiment on ultra-high cycle bending vibration fatigue of titanium alloy TC17, Journal of Aerospace Power, 27 (2012) 617-622.
Google Scholar
[6]
C. Bathias, Piezoelectric fatigue testing machines and devices, Third International Conference on Very High Cycle, 28 (2006) 1438 - 1144.
Google Scholar
[7]
R. Ebara, The present situation and future problems in ultrasonic fatigue testing – mainly reviewed on environmental effects and materials' screening, International Journal of Fatigue, 28 (2006) 1465-1470.
DOI: 10.1016/j.ijfatigue.2005.04.019
Google Scholar
[8]
Mughrabi, On the life-controlling microstructural fatigue mechanisms in ductile metals and alloys in the gigacycle regime, Fatigue & Fracture of Engineering Materials & Structures, 22 (1999) 633-641.
DOI: 10.1046/j.1460-2695.1999.00186.x
Google Scholar
[9]
J. Petit, C. Sarrazin-Baudoux, An overview on the influence of the atmosphere environment on ultra-high-cycle fatigue and ultra-slow fatigue crack propagation, International Journal of Fatigue, 28 (2006) 1471-1478.
DOI: 10.1016/j.ijfatigue.2005.06.057
Google Scholar
[10]
S. Stanzl-Tschegg, H. Mughrabi, S. Bernd, Life time and cyclic slip of copper in the VHCF regime, International Journal of Fatigue, 29 (2007) 2050-(2059).
DOI: 10.1016/j.ijfatigue.2007.03.010
Google Scholar
[11]
B. Zettl, H. Mayer, C. Ede, S. Stanzl-Tschegg, Very high cycle fatigue of normalized carbon steels, International Journal of Fatigue, 28 (2006) 1583-1589.
DOI: 10.1016/j.ijfatigue.2005.05.016
Google Scholar
[12]
Y. Furuya, K. Kobayashi, M. Hayakawa, M. Sakamoto, Y. Koizumi, H. Harada, High-temperature ultrasonic fatigue testing of single-crystal superalloys, Materials Letters, 69 (2012) 1-3.
DOI: 10.1016/j.matlet.2011.11.066
Google Scholar
[13]
A. Shyam, C.J. Torbet, S.K. Jha, J.M. Larsen, M.J. Caton, C.J. Szczepanski, T.M. Pollock, J.W. Jones, Development of ultrasonic fatigue for rapid high temperature fatigue studies in turbine engine materials, Materials Damage Prognosis, (2005).
DOI: 10.7449/2004/superalloys_2004_259_268
Google Scholar
[14]
D. Wagner, F.J. Cavalieri, C. Bathias, N. Ranc, Ultrasonic fatigue tests at high temperature on an austenitic steel, Propulsion and Power Research, 1 (2012) 29-35.
DOI: 10.1016/j.jppr.2012.10.008
Google Scholar
[15]
J.Z. Yi, C.J. Torbet, Q. Feng, T.M. Pollock, J.W. Jones, Ultrasonic fatigue of a single crystal Ni-base superalloy at 1000°C, Materials Science and Engineering: A, 443 (2007) 142-149.
DOI: 10.1016/j.msea.2006.08.028
Google Scholar
[16]
X. Zhu, A. Shyam, J. Jones, H. Mayer, J. Lasecki, J. Allison, Effects of microstructure and temperature on fatigue behavior of E319-T7 cast aluminum alloy in very long life cycles, International Journal of Fatigue, 28 (2006) 1566-1571.
DOI: 10.1016/j.ijfatigue.2005.04.016
Google Scholar
[17]
Y. Hong, A. Zhao, G. Qian, Essential characteristic and influential factors for very-high-cycle fatigue behavior of metallic materials, ACTA METALLURGICA SINICA, 45 (2009) 769–780.
Google Scholar
[18]
H. Mayer, M. Papakyriacou, R. Pippan, S. Stanzl-Tschegg, Influence of loading frequency on the high cycle fatigue properties of AlZnMgCu1. 5 aluminium alloy, Materials Science and Engineering A, 314 (2001) 48 - 54.
DOI: 10.1016/s0921-5093(00)01913-4
Google Scholar
[19]
M. Papakyriacou, H. Mayer, C. Pypen, H.P. Jr, S. Stanzl-Tschegg, Influence of loading frequency on high cycle fatigue properties of b. c. c. and h. c. p. metals, Materials Science and Engineering: A, 308 (2001) 143-152.
DOI: 10.1016/s0921-5093(00)01978-x
Google Scholar
[20]
S. Stanzl-Tschegg, Fatigue crack growth and thresholds at ultrasonic frequencies, International Journal of Fatigue, 28 (2006) 1456-1464.
DOI: 10.1016/j.ijfatigue.2005.06.058
Google Scholar
[21]
A. Zhao, J. Xie, C. Sun, Z. Lei, Y. Hong, Effects of strength level and loading frequency on very-high-cycle fatigue behavior for a bearing steel, International Journal of Fatigue, 38 (2012) 46-56.
DOI: 10.1016/j.ijfatigue.2011.11.014
Google Scholar
[22]
C. Wang, D. Wagner, Q.Y. Wang, C. Bathias, Gigacycle fatigue initiation mechanism in Armco iron, International Journal of Fatigue, 45 (2012) 91-97.
DOI: 10.1016/j.ijfatigue.2012.06.005
Google Scholar
[23]
Q.Y. Wang, C. Bathias, N. Kawagoishi, C. Q, Effect of inclusion on subsurface crack initiation and gigacycle fatigue strength, International Journal of Fatigue, 24 (2002) 1269-1274.
DOI: 10.1016/s0142-1123(02)00037-3
Google Scholar