Effect of Temperature and Loading Frequency on the Fatigue Behavior of Ti-17

Article Preview

Abstract:

A high-temperature ultrasonic fatigue testing system was developed to evaluate the gigacycle fatigue properties of Ti-17. Ultrasonic (20 kHz) fatigue tests were performed at room temperature, 200°C and 350°C, respectively. The dynamic Young’s modulus and fatigue endurance limit decrease with increasing temperature linearly. Rotating bending (50 Hz) tests were performed to evaluate the influence of loading frequency at room temperature, 200°C and 350°C, respectively. There is an obviously loading frequency effect at elevated temperature, although no loading frequency effect at room temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

131-139

Citation:

Online since:

September 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Cadario, B. Alfredsson, Fatigue growth of short cracks in Ti-17: Experiments and simulations, Engineering Fracture Mechanics, 74 (2007) 2293-2310.

DOI: 10.1016/j.engfracmech.2006.11.016

Google Scholar

[2] C. Cellard, D. Retraint, M. François, E. Rouhaud, D. Le Saunier, Laser shock peening of Ti-17 titanium alloy: Influence of process parameters, Materials Science and Engineering: A, 532 (2012) 362-372.

DOI: 10.1016/j.msea.2011.10.104

Google Scholar

[3] A. Ebach-Stahl, C. Eilers, N. Laska, R. Braun, Cyclic oxidation behaviour of the titanium alloys Ti-6242 and Ti-17 with Ti–Al–Cr–Y coatings at 600 and 700  °C in air, Surface and Coatings Technology, 223 (2013) 24-31.

DOI: 10.1016/j.surfcoat.2013.02.021

Google Scholar

[4] M.C. Gean, T.N. Farris, Elevated temperature fretting fatigue of Ti-17 with surface treatments, Tribology International, 42 (2009) 1340-1345.

DOI: 10.1016/j.triboint.2009.04.027

Google Scholar

[5] Q. -t. LI, Q. -c. LIU, J. -s. SHEN, Experiment on ultra-high cycle bending vibration fatigue of titanium alloy TC17, Journal of Aerospace Power, 27 (2012) 617-622.

Google Scholar

[6] C. Bathias, Piezoelectric fatigue testing machines and devices, Third International Conference on Very High Cycle, 28 (2006) 1438 - 1144.

Google Scholar

[7] R. Ebara, The present situation and future problems in ultrasonic fatigue testing – mainly reviewed on environmental effects and materials' screening, International Journal of Fatigue, 28 (2006) 1465-1470.

DOI: 10.1016/j.ijfatigue.2005.04.019

Google Scholar

[8] Mughrabi, On the life-controlling microstructural fatigue mechanisms in ductile metals and alloys in the gigacycle regime, Fatigue & Fracture of Engineering Materials & Structures, 22 (1999) 633-641.

DOI: 10.1046/j.1460-2695.1999.00186.x

Google Scholar

[9] J. Petit, C. Sarrazin-Baudoux, An overview on the influence of the atmosphere environment on ultra-high-cycle fatigue and ultra-slow fatigue crack propagation, International Journal of Fatigue, 28 (2006) 1471-1478.

DOI: 10.1016/j.ijfatigue.2005.06.057

Google Scholar

[10] S. Stanzl-Tschegg, H. Mughrabi, S. Bernd, Life time and cyclic slip of copper in the VHCF regime, International Journal of Fatigue, 29 (2007) 2050-(2059).

DOI: 10.1016/j.ijfatigue.2007.03.010

Google Scholar

[11] B. Zettl, H. Mayer, C. Ede, S. Stanzl-Tschegg, Very high cycle fatigue of normalized carbon steels, International Journal of Fatigue, 28 (2006) 1583-1589.

DOI: 10.1016/j.ijfatigue.2005.05.016

Google Scholar

[12] Y. Furuya, K. Kobayashi, M. Hayakawa, M. Sakamoto, Y. Koizumi, H. Harada, High-temperature ultrasonic fatigue testing of single-crystal superalloys, Materials Letters, 69 (2012) 1-3.

DOI: 10.1016/j.matlet.2011.11.066

Google Scholar

[13] A. Shyam, C.J. Torbet, S.K. Jha, J.M. Larsen, M.J. Caton, C.J. Szczepanski, T.M. Pollock, J.W. Jones, Development of ultrasonic fatigue for rapid high temperature fatigue studies in turbine engine materials, Materials Damage Prognosis, (2005).

DOI: 10.7449/2004/superalloys_2004_259_268

Google Scholar

[14] D. Wagner, F.J. Cavalieri, C. Bathias, N. Ranc, Ultrasonic fatigue tests at high temperature on an austenitic steel, Propulsion and Power Research, 1 (2012) 29-35.

DOI: 10.1016/j.jppr.2012.10.008

Google Scholar

[15] J.Z. Yi, C.J. Torbet, Q. Feng, T.M. Pollock, J.W. Jones, Ultrasonic fatigue of a single crystal Ni-base superalloy at 1000°C, Materials Science and Engineering: A, 443 (2007) 142-149.

DOI: 10.1016/j.msea.2006.08.028

Google Scholar

[16] X. Zhu, A. Shyam, J. Jones, H. Mayer, J. Lasecki, J. Allison, Effects of microstructure and temperature on fatigue behavior of E319-T7 cast aluminum alloy in very long life cycles, International Journal of Fatigue, 28 (2006) 1566-1571.

DOI: 10.1016/j.ijfatigue.2005.04.016

Google Scholar

[17] Y. Hong, A. Zhao, G. Qian, Essential characteristic and influential factors for very-high-cycle fatigue behavior of metallic materials, ACTA METALLURGICA SINICA, 45 (2009) 769–780.

Google Scholar

[18] H. Mayer, M. Papakyriacou, R. Pippan, S. Stanzl-Tschegg, Influence of loading frequency on the high cycle fatigue properties of AlZnMgCu1. 5 aluminium alloy, Materials Science and Engineering A, 314 (2001) 48 - 54.

DOI: 10.1016/s0921-5093(00)01913-4

Google Scholar

[19] M. Papakyriacou, H. Mayer, C. Pypen, H.P. Jr, S. Stanzl-Tschegg, Influence of loading frequency on high cycle fatigue properties of b. c. c. and h. c. p. metals, Materials Science and Engineering: A, 308 (2001) 143-152.

DOI: 10.1016/s0921-5093(00)01978-x

Google Scholar

[20] S. Stanzl-Tschegg, Fatigue crack growth and thresholds at ultrasonic frequencies, International Journal of Fatigue, 28 (2006) 1456-1464.

DOI: 10.1016/j.ijfatigue.2005.06.058

Google Scholar

[21] A. Zhao, J. Xie, C. Sun, Z. Lei, Y. Hong, Effects of strength level and loading frequency on very-high-cycle fatigue behavior for a bearing steel, International Journal of Fatigue, 38 (2012) 46-56.

DOI: 10.1016/j.ijfatigue.2011.11.014

Google Scholar

[22] C. Wang, D. Wagner, Q.Y. Wang, C. Bathias, Gigacycle fatigue initiation mechanism in Armco iron, International Journal of Fatigue, 45 (2012) 91-97.

DOI: 10.1016/j.ijfatigue.2012.06.005

Google Scholar

[23] Q.Y. Wang, C. Bathias, N. Kawagoishi, C. Q, Effect of inclusion on subsurface crack initiation and gigacycle fatigue strength, International Journal of Fatigue, 24 (2002) 1269-1274.

DOI: 10.1016/s0142-1123(02)00037-3

Google Scholar