[1]
I. Marines, X. Bin, C. Bathias, An understanding of very high cycle fatigue of metals. Int J Fatigue, 25 (2003) 1101-1107.
DOI: 10.1016/s0142-1123(03)00147-6
Google Scholar
[2]
K. Tanaka, Y. Akiniwa, Fatigue crack propagation behavior derived from S–N data in very high cycle regime. Fatigue Fract Eng Mater Struct, 25 (2002) 775-784.
DOI: 10.1046/j.1460-2695.2002.00547.x
Google Scholar
[3]
S. Nishijima, K. Kanazawa, Stepwise S-N curve and fish-eye failure in gigacycle fatigue. Fatigue Fract Eng Mater Struct, 22 (1999) 601-607.
DOI: 10.1046/j.1460-2695.1999.00206.x
Google Scholar
[4]
M.K. Khan, Q.Y. Wang, Investigation of crack initiation and propagation behavior of AISI 310 stainless steel up to very high cycle fatigue. Int J Fatigue, 54 (2013) 38-46.
DOI: 10.1016/j.ijfatigue.2013.04.009
Google Scholar
[5]
H. Tao, H. Xue, Very high cycle fatigue properties for aluminum alloys. In: Proc. 4. intern. conf. on VHCF. Kusatsu; 2004. pp.413-9.
Google Scholar
[6]
G.C. Chai, Fatigue behaviour of duplex stainless steels in the very high cycle regime. Int J Fatigue, 28 (2006) 1611-1617.
DOI: 10.1016/j.ijfatigue.2005.06.054
Google Scholar
[7]
Y.B. Liu, Z.G. Yanga, Y.D. Li, S.M. Chen, S.X. Li, W.J. Hui, Y.Q. Weng. On the formation of GBF of high-strength steels in the very high cycle fatigue regime. Materials Science & Engineering A, 497 (2008) 408-415.
DOI: 10.1016/j.msea.2008.08.011
Google Scholar
[8]
L. Stanz, S. Tschegg, Fatigue crack growth and thresholds at ultrasonic frequencies. Int J Fatigue, 28 (2006) 1456-1464.
DOI: 10.1016/j.ijfatigue.2005.06.058
Google Scholar
[9]
C. Bathias, P.C. Paris. Gigacycle fatigue in mechanical practice. New York: Marcel Dekker, (2005).
Google Scholar
[10]
Q.Y. Wang, J.Y. Berard, A. Dubarre, Gigacycle fatigue of ferrous alloys. Fatigue Fract Eng Mater Struct, 22 (1999) 667-672.
DOI: 10.1046/j.1460-2695.1999.00185.x
Google Scholar
[11]
I. Marines, G. Dominguez, G. Baudry, J.F. Vittori, S. Rathery, J.P. Doucet, C. Bathias, Ultrasonic fatigue tests on bearing steel AISI-SAE 52100 at frequency of 20 and 30 kHz. Int J Fatigue, 25 (2003) 1037-1046.
DOI: 10.1016/s0142-1123(03)00161-0
Google Scholar
[12]
Y. Furuya, S. Matsuoka, T. Abe, K. Yamaguchi, Gigacycle fatigue properties for high strength low-alloy steel at 100Hz, 600Hz and 20KHz. Scr Mater, 46 (2002) 157-162.
DOI: 10.1016/s1359-6462(01)01213-1
Google Scholar
[13]
E. Bayraktar, I.M. Garcias, C. Bathias, Failure mechanisms of automotive metallic alloys in very high cycle fatigue range. Int J Fatigue, 28 (2006) 1590-1602.
DOI: 10.1016/j.ijfatigue.2005.09.019
Google Scholar
[14]
J. Huang, J.E. Spowart, J.W. Jones, Fatigue behaviour of SiCpreinforced aluminium composites in the very high cycle regime using ultrasonic fatigue. Fatigue Fract Eng Mater Struct, 29 (2006) 507-517.
DOI: 10.1111/j.1460-2695.2006.00998.x
Google Scholar
[15]
Y.Y. Zhang, Z. Duan, H.J. Shi, Comparison of the very high cycle fatigue behaviors of INCONEL 718 with different loading frequencies. SCIENCE CHINA, Physics, Mechanics & Astronomy, 56 (2013) 617-623.
DOI: 10.1007/s11433-013-5013-9
Google Scholar
[16]
I. Nonaka, S. Setowaki, Y.J. Ichikawa, Effect of load frequency on high cycle fatigue strength of bullet train axle steel. Int J Fatigue, 60 (2014) 43-47.
DOI: 10.1016/j.ijfatigue.2013.08.020
Google Scholar
[17]
C. Bathias, P.C. Paris, Gigacycle Fatigue of Metallic Aircraft Components. Int J Fatigue, 32 (2010) 894-897.
DOI: 10.1016/j.ijfatigue.2009.03.015
Google Scholar
[18]
A.G. Zhao, J.J. Xie, C.Q. Sun, Z.Q. Lei, Y.S. Hong, Effects of strength level and loading frequency on very-high-cycle fatigue behavior for a bearing steel. Int J Fatigue, 38 (2012) 46–56.
DOI: 10.1016/j.ijfatigue.2011.11.014
Google Scholar
[19]
J.W. Zhang, L.T. Lu, K. Shiozawa, W.N. Zhou, W.H. Zhang, Effect of nitrocarburizing and post-oxidation on fatigue behavior of 35CrMo alloy steel in very high cycle fatigue regime. Int J Fatigue, 33 (2011) 880-886.
DOI: 10.1016/j.ijfatigue.2011.01.016
Google Scholar
[20]
J.W. Zhang, L.T. Lu, K. Shiozawa, G.D. Cui, Fatigue properties of oxynitrocarburized medium carbon railway axle steel in very high cycle regime. Int J Fatigue, 32 (2010) 1805-11.
DOI: 10.1016/j.ijfatigue.2010.04.007
Google Scholar
[21]
M.S. Suh, C.M. Suh, Y.S. Pyun, Very high cycle fatigue characteristics of a chrome-molybdenum steel treated by ultrasonic nanocrystal surface modification technique. Fatigue Fract Engng Mater Struct, 36 (2013) 769-778.
DOI: 10.1111/ffe.12045
Google Scholar
[22]
T. Naito, H. Ueda, Fatigue Behavior of Carburized Steel with Internal Oxides and Nonmartensitic Microstructure near the surface. Metallurgical Transactions, 15(1984) 1431-1436.
DOI: 10.1007/bf02648572
Google Scholar
[23]
Y. Nakamura, T. Sakai, H. Hirano, K.S.R. Chandran, Effect of alumite treatment on long-life fatigue behavior of aluminum alloy in rotating bending. Int J Fatigue, 32 (2010) 643-654.
DOI: 10.1016/j.ijfatigue.2009.10.002
Google Scholar
[24]
G.A. Qian, C.E. Zhou, Y.S. Hong, Crack propagation mechanism and life prediction for very-high cycle fatigue of a structural steel in different environmental medias. Frattura ed Integrità Strutturale, 25 (2013) 7-14.
DOI: 10.3221/igf-esis.25.02
Google Scholar
[25]
S.T. Stefanie, Fatigue crack growth and thresholds at ultrasonic frequenciesFatigue crack growth and thresholds at ultrasonic frequencies. Int J Fatigue, 28 (2006) 1456-1464.
DOI: 10.1016/j.ijfatigue.2005.06.058
Google Scholar
[26]
Y. Murakami, N.N. Yokoyama, J. Nagata, Mechanism of fatigue in ultralong life regime. Fatigue Fract Eng Mater Struc, 25 (2002) 735-746.
DOI: 10.1046/j.1460-2695.2002.00576.x
Google Scholar
[27]
Y. Furaya, T. Abe, S. Matsuok, 1010-cycle fatigue properties of 1800 MPa-class JIS-SUP7spring steel. Fatigue Fract Eng Mater Struct, 26 (2003) 641-646.
DOI: 10.1046/j.1460-2695.2003.00661.x
Google Scholar
[28]
Y. Murakami, T. Nomotomo, T. Ueda, Y. Murakami, On the mechanism of fatigue failure in the super long life regime(N>107 cycles). PartⅠ: influence of hydrogen trapped by inclusions. Fatigue Fract Eng Mater Struct, 23 (2002) 893-902.
DOI: 10.1046/j.1460-2695.2000.00328.x
Google Scholar
[29]
Y. Ochi, T. Matsumura, K. Masaki, S. Yoshida, High-cycle rotating bending fatigue property in very long-life regime of high-strength steels. Fatigue Fract Eng Mater Struct, 25 (2002) 823-830.
DOI: 10.1046/j.1460-2695.2002.00575.x
Google Scholar
[30]
Z.G. Yang, S. X. Li, Y.D. Li, Y.B. Liua, W.J. Hui, Y.Q. Weng, Relationship among fatigue life, inclusion size and hydrogen concentration for high-strength steel in the VHCF regime. Materials Science & Engineering A, 527 (2010) 559-564.
DOI: 10.1016/j.msea.2009.10.056
Google Scholar
[31]
Y.D. Li, S.M. Chen, Y.B. Liu, Z.G. Yang, The characteristics of granular-bright facet in hydrogen pre-charged and uncharged high strength steels in the very high cycle fatigue regime The characteristics of granular-bright facet in hydrogen. J Mater Sci, 45 (2010).
DOI: 10.1007/s10853-009-4007-5
Google Scholar
[32]
Y. Murakami, Metal fatigue: effects of small defects and nonmetallic inclusions. Elsevier Ltd., Oxford, (2002).
Google Scholar
[33]
Y. Murakami, M. Endo, Effects of defects, inclusions and inhomogeneities on fatigue strength. Int J Fatigue, 16 (1994)163-182.
DOI: 10.1016/0142-1123(94)90001-9
Google Scholar
[34]
Z.G. Yang, J.M. Zhang, S.X. Li, G.Y. Li, Q.Y. Wang, On the critical size of high strength steels under ultra-high cycle fatigue. Materials Science & Engineering A, 427 (2006) 167-174.
DOI: 10.1016/j.msea.2006.04.068
Google Scholar
[35]
Z.Q. Lei, Y.S. Hong, J.J. Xie, C.Q. Sun, Effects of inclusion size and location on very-high-cycle fatigue behavior for high strength steels. Materials Science & Engineering A, 558 (2012) 234–241.
DOI: 10.1016/j.msea.2012.07.118
Google Scholar