Influential Factors for Very High Cycle Fatigue Behavior of Metallic Materials

Article Preview

Abstract:

In recent years, very high cycle fatigue has become a major concern in design and durability of engineering components and structures such as railway wheels, rails, offshore structures, bridges, load bearings, etc. There are some factors which have been assumed to influence the fatigue behavior for metallic materials in VHCF regime. But most factors influencing the VHCF behavior have not been studied thoroughly. In order to deeply understand the essence of material fatigue, the experimental and theoretical aspects of the factors influencing on very high cycle fatigue for metallic materials should be studied further more. This paper deals with an overview on the effect of factors on the property in very high cycle fatigue regime. Research trends and some conclusions in this field are briefly discussed and obtained.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

150-155

Citation:

Online since:

September 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I. Marines, X. Bin, C. Bathias, An understanding of very high cycle fatigue of metals. Int J Fatigue, 25 (2003) 1101-1107.

DOI: 10.1016/s0142-1123(03)00147-6

Google Scholar

[2] K. Tanaka, Y. Akiniwa, Fatigue crack propagation behavior derived from S–N data in very high cycle regime. Fatigue Fract Eng Mater Struct, 25 (2002) 775-784.

DOI: 10.1046/j.1460-2695.2002.00547.x

Google Scholar

[3] S. Nishijima, K. Kanazawa, Stepwise S-N curve and fish-eye failure in gigacycle fatigue. Fatigue Fract Eng Mater Struct, 22 (1999) 601-607.

DOI: 10.1046/j.1460-2695.1999.00206.x

Google Scholar

[4] M.K. Khan, Q.Y. Wang, Investigation of crack initiation and propagation behavior of AISI 310 stainless steel up to very high cycle fatigue. Int J Fatigue, 54 (2013) 38-46.

DOI: 10.1016/j.ijfatigue.2013.04.009

Google Scholar

[5] H. Tao, H. Xue, Very high cycle fatigue properties for aluminum alloys. In: Proc. 4. intern. conf. on VHCF. Kusatsu; 2004. pp.413-9.

Google Scholar

[6] G.C. Chai, Fatigue behaviour of duplex stainless steels in the very high cycle regime. Int J Fatigue, 28 (2006) 1611-1617.

DOI: 10.1016/j.ijfatigue.2005.06.054

Google Scholar

[7] Y.B. Liu, Z.G. Yanga, Y.D. Li, S.M. Chen, S.X. Li, W.J. Hui, Y.Q. Weng. On the formation of GBF of high-strength steels in the very high cycle fatigue regime. Materials Science & Engineering A, 497 (2008) 408-415.

DOI: 10.1016/j.msea.2008.08.011

Google Scholar

[8] L. Stanz, S. Tschegg, Fatigue crack growth and thresholds at ultrasonic frequencies. Int J Fatigue, 28 (2006) 1456-1464.

DOI: 10.1016/j.ijfatigue.2005.06.058

Google Scholar

[9] C. Bathias, P.C. Paris. Gigacycle fatigue in mechanical practice. New York: Marcel Dekker, (2005).

Google Scholar

[10] Q.Y. Wang, J.Y. Berard, A. Dubarre, Gigacycle fatigue of ferrous alloys. Fatigue Fract Eng Mater Struct, 22 (1999) 667-672.

DOI: 10.1046/j.1460-2695.1999.00185.x

Google Scholar

[11] I. Marines, G. Dominguez, G. Baudry, J.F. Vittori, S. Rathery, J.P. Doucet, C. Bathias, Ultrasonic fatigue tests on bearing steel AISI-SAE 52100 at frequency of 20 and 30 kHz. Int J Fatigue, 25 (2003) 1037-1046.

DOI: 10.1016/s0142-1123(03)00161-0

Google Scholar

[12] Y. Furuya, S. Matsuoka, T. Abe, K. Yamaguchi, Gigacycle fatigue properties for high strength low-alloy steel at 100Hz, 600Hz and 20KHz. Scr Mater, 46 (2002) 157-162.

DOI: 10.1016/s1359-6462(01)01213-1

Google Scholar

[13] E. Bayraktar, I.M. Garcias, C. Bathias, Failure mechanisms of automotive metallic alloys in very high cycle fatigue range. Int J Fatigue, 28 (2006) 1590-1602.

DOI: 10.1016/j.ijfatigue.2005.09.019

Google Scholar

[14] J. Huang, J.E. Spowart, J.W. Jones, Fatigue behaviour of SiCpreinforced aluminium composites in the very high cycle regime using ultrasonic fatigue. Fatigue Fract Eng Mater Struct, 29 (2006) 507-517.

DOI: 10.1111/j.1460-2695.2006.00998.x

Google Scholar

[15] Y.Y. Zhang, Z. Duan, H.J. Shi, Comparison of the very high cycle fatigue behaviors of INCONEL 718 with different loading frequencies. SCIENCE CHINA, Physics, Mechanics & Astronomy, 56 (2013) 617-623.

DOI: 10.1007/s11433-013-5013-9

Google Scholar

[16] I. Nonaka, S. Setowaki, Y.J. Ichikawa, Effect of load frequency on high cycle fatigue strength of bullet train axle steel. Int J Fatigue, 60 (2014) 43-47.

DOI: 10.1016/j.ijfatigue.2013.08.020

Google Scholar

[17] C. Bathias, P.C. Paris, Gigacycle Fatigue of Metallic Aircraft Components. Int J Fatigue, 32 (2010) 894-897.

DOI: 10.1016/j.ijfatigue.2009.03.015

Google Scholar

[18] A.G. Zhao, J.J. Xie, C.Q. Sun, Z.Q. Lei, Y.S. Hong, Effects of strength level and loading frequency on very-high-cycle fatigue behavior for a bearing steel. Int J Fatigue, 38 (2012) 46–56.

DOI: 10.1016/j.ijfatigue.2011.11.014

Google Scholar

[19] J.W. Zhang, L.T. Lu, K. Shiozawa, W.N. Zhou, W.H. Zhang, Effect of nitrocarburizing and post-oxidation on fatigue behavior of 35CrMo alloy steel in very high cycle fatigue regime. Int J Fatigue, 33 (2011) 880-886.

DOI: 10.1016/j.ijfatigue.2011.01.016

Google Scholar

[20] J.W. Zhang, L.T. Lu, K. Shiozawa, G.D. Cui, Fatigue properties of oxynitrocarburized medium carbon railway axle steel in very high cycle regime. Int J Fatigue, 32 (2010) 1805-11.

DOI: 10.1016/j.ijfatigue.2010.04.007

Google Scholar

[21] M.S. Suh, C.M. Suh, Y.S. Pyun, Very high cycle fatigue characteristics of a chrome-molybdenum steel treated by ultrasonic nanocrystal surface modification technique. Fatigue Fract Engng Mater Struct, 36 (2013) 769-778.

DOI: 10.1111/ffe.12045

Google Scholar

[22] T. Naito, H. Ueda, Fatigue Behavior of Carburized Steel with Internal Oxides and Nonmartensitic Microstructure near the surface. Metallurgical Transactions, 15(1984) 1431-1436.

DOI: 10.1007/bf02648572

Google Scholar

[23] Y. Nakamura, T. Sakai, H. Hirano, K.S.R. Chandran, Effect of alumite treatment on long-life fatigue behavior of aluminum alloy in rotating bending. Int J Fatigue, 32 (2010) 643-654.

DOI: 10.1016/j.ijfatigue.2009.10.002

Google Scholar

[24] G.A. Qian, C.E. Zhou, Y.S. Hong, Crack propagation mechanism and life prediction for very-high cycle fatigue of a structural steel in different environmental medias. Frattura ed Integrità Strutturale, 25 (2013) 7-14.

DOI: 10.3221/igf-esis.25.02

Google Scholar

[25] S.T. Stefanie, Fatigue crack growth and thresholds at ultrasonic frequenciesFatigue crack growth and thresholds at ultrasonic frequencies. Int J Fatigue, 28 (2006) 1456-1464.

DOI: 10.1016/j.ijfatigue.2005.06.058

Google Scholar

[26] Y. Murakami, N.N. Yokoyama, J. Nagata, Mechanism of fatigue in ultralong life regime. Fatigue Fract Eng Mater Struc, 25 (2002) 735-746.

DOI: 10.1046/j.1460-2695.2002.00576.x

Google Scholar

[27] Y. Furaya, T. Abe, S. Matsuok, 1010-cycle fatigue properties of 1800 MPa-class JIS-SUP7spring steel. Fatigue Fract Eng Mater Struct, 26 (2003) 641-646.

DOI: 10.1046/j.1460-2695.2003.00661.x

Google Scholar

[28] Y. Murakami, T. Nomotomo, T. Ueda, Y. Murakami, On the mechanism of fatigue failure in the super long life regime(N>107 cycles). PartⅠ: influence of hydrogen trapped by inclusions. Fatigue Fract Eng Mater Struct, 23 (2002) 893-902.

DOI: 10.1046/j.1460-2695.2000.00328.x

Google Scholar

[29] Y. Ochi, T. Matsumura, K. Masaki, S. Yoshida, High-cycle rotating bending fatigue property in very long-life regime of high-strength steels. Fatigue Fract Eng Mater Struct, 25 (2002) 823-830.

DOI: 10.1046/j.1460-2695.2002.00575.x

Google Scholar

[30] Z.G. Yang, S. X. Li, Y.D. Li, Y.B. Liua, W.J. Hui, Y.Q. Weng, Relationship among fatigue life, inclusion size and hydrogen concentration for high-strength steel in the VHCF regime. Materials Science & Engineering A, 527 (2010) 559-564.

DOI: 10.1016/j.msea.2009.10.056

Google Scholar

[31] Y.D. Li, S.M. Chen, Y.B. Liu, Z.G. Yang, The characteristics of granular-bright facet in hydrogen pre-charged and uncharged high strength steels in the very high cycle fatigue regime The characteristics of granular-bright facet in hydrogen. J Mater Sci, 45 (2010).

DOI: 10.1007/s10853-009-4007-5

Google Scholar

[32] Y. Murakami, Metal fatigue: effects of small defects and nonmetallic inclusions. Elsevier Ltd., Oxford, (2002).

Google Scholar

[33] Y. Murakami, M. Endo, Effects of defects, inclusions and inhomogeneities on fatigue strength. Int J Fatigue, 16 (1994)163-182.

DOI: 10.1016/0142-1123(94)90001-9

Google Scholar

[34] Z.G. Yang, J.M. Zhang, S.X. Li, G.Y. Li, Q.Y. Wang, On the critical size of high strength steels under ultra-high cycle fatigue. Materials Science & Engineering A, 427 (2006) 167-174.

DOI: 10.1016/j.msea.2006.04.068

Google Scholar

[35] Z.Q. Lei, Y.S. Hong, J.J. Xie, C.Q. Sun, Effects of inclusion size and location on very-high-cycle fatigue behavior for high strength steels. Materials Science & Engineering A, 558 (2012) 234–241.

DOI: 10.1016/j.msea.2012.07.118

Google Scholar