[1]
T. Sakai, M. Takeda, K. Shiozawa, Y. Ochi, M. Nakajima, T. Nakamura and N. Oguma, Experimental evidence of duplex S-N characteristics in wide life region for high strength steels, Proceedings of the 7th international fatigue congress, 1 (1999).
Google Scholar
[2]
K. Shiozawa, L. Lu and S. Ishihara, Subsurface fatigue crack initiation behavior and S-N curve characteristics in high carbon chromium bearing steel, Journal of the Society of Materials and Science, Japan, 48 (1999) 1095-1100.
DOI: 10.2472/jsms.48.1095
Google Scholar
[3]
H. Mughrabi, Zur dauerschwingfestigkeit im bereich extrem hoher bruchlastspielzahlen: mehrstufige lebensdauerkurven, Harterei-Technische Mitteilungen, 56 (2001) 300-303.
Google Scholar
[4]
T. Sakai, Y. Sato and N. Oguma, Characteristic S-N properties of high-carbon-chromium-bearing steel under axial loading in long-life fatigue, Fatigue & Fracture of Engineering Materials & Structures, 25 (2002) 765-773.
DOI: 10.1046/j.1460-2695.2002.00574.x
Google Scholar
[5]
Q. Y. Wang, C. Bathias, N. Kawagoishi and Q. Chen, Effect of inclusion on subsurface crack initiation and gigacycle fatigue strength, International Journal of Fatigue, 24 (2002) 1269-1274.
DOI: 10.1016/s0142-1123(02)00037-3
Google Scholar
[6]
C. Bathias and P.C. Paris, Rotating-bending internal crack stress correction, Gigacycle Fatigue in Mechanical Practice, Marcel Dekker, New York, Section 4. 7 (2005) 125-127.
Google Scholar
[7]
T. Sakai, Review and prospects for current studies on very high cycles fatigue of metallic materials for machine structural use, Journal of Solid Mechanics and Materials Engineering, 3, 3 (2009) 425-439.
DOI: 10.1299/jmmp.3.425
Google Scholar
[8]
N. Oguma, B. Lian, T. Sakai, K. Watanabe and Y. Odake, Long life fatigue fracture induced by interior inclusions for high carbon chromium bearing steels under rotating bending, Journal of ASTM International, 7, 9 (2010) 1-9.
DOI: 10.1520/jai102540
Google Scholar
[9]
C. Berger and H. J. Christ, Proceedings of VHCF-5, DVM, Berlin (2011).
Google Scholar
[10]
N. Oguma, H. Harada and T. Sakai, Mechanism of long life fatigue fracture induced by interior inclusion for bearing steel in rotating bending, Journal of the Society of Materials and Science, Japan, 52 (2003) 1292-1297.
DOI: 10.2472/jsms.52.1292
Google Scholar
[11]
N. Oguma, H. Harada and T. Sakai, Strength Level Dependence of Long-Life Fatigue Behavior in Interior Inclusion Induced Fracture for Bearing Steel in Rotating Bending, Transactions of the Japan Society of Mechanical Engineers, A-70, 690 (2004).
DOI: 10.1299/kikaia.70.221
Google Scholar
[12]
Y. Murakami, T. Nomoto and T. Ueda, Factors influencing the mechanism of superlong fatigue failure in steels, Fatigue & Fracture of Engineering Materials & Structures, 22 (1999) 581-590.
DOI: 10.1046/j.1460-2695.1999.00187.x
Google Scholar
[13]
L. T. Lu and K. Shiozawa, Effect of Shot-Peening on Super-Long-Life Fatigue Bahavior in High Carbon-Chromium Bearing Steel, Transactions of the Japan Society of Mechanical Engineers, A-67, 662 (2001) 1630-1638.
DOI: 10.1299/kikaia.67.1630
Google Scholar
[14]
Y. Kuroshima, T. Ikeda, M. Harada and S. Harada, Subsurface crack growth behavior on high cycle fatigue of high strength steel, Transactions of the Japan Society of Mechanical Engineers, 64, 626 (1998) 2536-2541.
DOI: 10.1299/kikaia.64.2536
Google Scholar
[15]
L. Lu and K. Shiozawa, Effect of Two-Step Load Variation on Super-Long Life Fatigue and Internal Crack Growth Behavior of High Carbon-Chromium Bearing Steel, Transactions of the Japan Society of Mechanical Engineers, A-68, 675 (2002) 1666-1673.
DOI: 10.1299/kikaia.68.1666
Google Scholar
[16]
Y. Akiniwa, K. Tanaka and A. Nakatsu, Evaluation of fatigue strength in very-long life regime of SNCM439 steels, Transactions of the Japan Society of Mechanical Engineers, A-70, 696, (2004) 1036-1041.
DOI: 10.1299/kikaia.70.1036
Google Scholar
[17]
M. Nakajima, N. Kamiya, H. Itoga, K. Tokaji and H. N. Ko, Experimental Estimation of Subsurface Crack Initiation Lives and Intrinsic Fatigue Limit in a High Strength Steel, Transactions of the Japan Society of Mechanical Engineers, A-70, 699 (2004).
DOI: 10.1299/kikaia.70.1636
Google Scholar
[18]
A. Sugeta, Y. Sugiyama and K. Minoshima, Ultra-high cycle fatigue characteristics and interior crack growth behavior under repeated two-step loading on high strength steel, JSME Annual Meeting, Osaka, (2007) 345-346.
DOI: 10.1299/jsmemecjo.2007.1.0_345
Google Scholar
[19]
S. Mizushima, N. Oguma, Y. Odake, and Y. Shimada, Influence of neglect time after hydrogen-charging for fatigue life of bearing steel in rotating bending, Proceedings of The 31st Symposium on Fatigue, Japan, 30 (2012) 134-137.
Google Scholar
[20]
N. Oguma, N. Sekisugi, K. Kida, Y. Odake and T. Sakai, Period of fine granular area formation of bearing steel in very high cycle fatigue regime, Advanced Materials Research, 891-892 (2014) 434-439.
DOI: 10.4028/www.scientific.net/amr.891-892.434
Google Scholar
[21]
R. E. Peterson, Stress Concentration Design Factors, John Wiley & Sons, Inc., New York, (1962) 50.
Google Scholar
[22]
N. Oguma and T. Sakai, Fatigue life prediction for bearing steel failed with fish-eye at subsurface in rotating bending, Journal of the Society of Materials and Science, Japan, 50 (2001) 516-523.
DOI: 10.2472/jsms.50.516
Google Scholar
[23]
Y. Murakami, S. Kodama, S. Konuma, Quantitative evaluation of effects of non-metallic inclusion on fatigue strength of high strength steel, Transactions of the Japan Society of Mechanical Engineers, A-54, 500 (1998) 688-696.
DOI: 10.1299/kikaia.54.688
Google Scholar