[1]
C. Masuda, S. Nishijima and Y. Tanaka, Relationship between fatigue strength and hardness for high strength steels, Transactions of the Japan Society of Mechanical Engineers (series A), 52(476) (1986) 847–852.
DOI: 10.1299/kikaia.52.847
Google Scholar
[2]
T. Sakai, M. Takeda, K. Shiozawa, Y. Ochi, M. Nakajima, T. Nakamura and N. Oguma, Experimental recommendation of characteristic S-N property for high carbon chromium bearing steel in wide life region in rotating bending, Journal of the Society of Materials Science, Japan, 49(7), (2000).
DOI: 10.1299/jsmemm.2008._os1510-1_
Google Scholar
[3]
T. Sakai, M. Takeda, N. Tanaka, M. Kanemitsu, N. Oguma and K. Shiozawa, Characteristic S-N property of high carbon chromium bearing steel in ultra-wide life region under rotating bending, Materials Science Research International, STP1 (2001).
DOI: 10.1109/ecodim.2001.992395
Google Scholar
[4]
H. Mughrabi, Zur Dauerschwingfestigkeit im Bereich extrem hoher Bruchlastspielzahlen: Mehrstufige Lebensdauerkurven, Harterei-technische Mitteilungen, 56(5), (2001) 300-303.
Google Scholar
[5]
C. Bathias and P. C. Paris, Gigacycle Fatigue in Mechanical Practice, Marcel Dekker, (2005), New York.
Google Scholar
[6]
D. G. Harlow, R. P. Wei, T. Sakai and N. Oguma, Crack growth based probability modeling of S-N response for high strength steel, International Journal of Fatigue, 28(11), (2006), 1479-1485.
DOI: 10.1016/j.ijfatigue.2005.05.019
Google Scholar
[7]
K. Shiozawa, Y. Morii, S. Nishino and L. Lu, Subsurface crack initiation and propagation mechanism in high-strength steel in a very high cycle fatigue regime, International Journal of Fatigue, 28(11), (2006) 1521-1532.
DOI: 10.1016/j.ijfatigue.2005.08.015
Google Scholar
[8]
T. Sakai, Review and prospects for current studies on very high cycle fatigue of metallic materials for machine structural use, Journal of Solid Mechanics and Materials Engineering, 3(3), (2009) 425-439.
DOI: 10.1299/jmmp.3.425
Google Scholar
[9]
M. Sugimoto, K. Kanazawa and A. Tange, The influence of slack quenching structures on internal fatigue fracture of a shot peened spring steel, Journal of the Society of Materials Science, Japan, 57(11) (2008) 1146-1152.
DOI: 10.2472/jsms.57.1146
Google Scholar
[10]
Y. Kuroshima, M. Shimizu and K. Kawasaki, Fracture mode transition in high cycle fatigue of high strength steel, Transactions of the Japan Society of Mechanical Engineers (series A), 59(560) (1993) 1001-1006.
DOI: 10.1299/kikaia.59.1001
Google Scholar
[11]
T. Toriyama, Y. Murakami, T. Yamashita, K. Tsubota and K. Furumura, Inclusion rating by statistics of extreme for electron beam remelted super clean bearing steel and its application to fatigue strength prediction, TETSU-TO-HAGANE, 81(10) (1995).
DOI: 10.2355/tetsutohagane1955.81.10_1019
Google Scholar
[12]
G. Chai, The formation of subsurface non-defect fatigue crack origins, International Journal of Fatigue, 28 (2006) 1533-1539.
DOI: 10.1016/j.ijfatigue.2005.06.060
Google Scholar
[13]
T. Miura, T. Sakakibara, S. Mimura, T. Kuno, S. Kikuchi, A. Ueno and T. Sakai, Fractographical investigation on mechanism of interior-induced fatigue fracture of SUP7 steel for hot formed springs, Journal of the Society of Materials Science, Japan, (2015).
DOI: 10.2472/jsms.64.613
Google Scholar
[14]
R. E. Peterson, Stress Concentration Design Factors, John Wiley & Sons, Inc., New York, (1962), p.50.
Google Scholar
[15]
K. Kobayashi and D. A. Shockey, A fractographic investigation of thermal embrittlement in cast duplex stainless steel, Metallurgical and Materials Transactions A, 18A(11) (1987) 1941-(1949).
DOI: 10.1007/bf02647024
Google Scholar
[16]
A. Ueno, H. Kishimoto, K. Kino and Y. Ishii, Topographical fractography and fracture simulation with scanning laser microscope, Transactions of the Japan Society of Mechanical Engineers (series A), 63(615) (1997) 2393–2399.
DOI: 10.1299/kikaia.63.2393
Google Scholar