[1]
G. Schrauf, B. Gölling, N. Wood, Key Aerodanymic Technologies for Aorcraft Performance Improvement, in: 5th Community Aeronautical Days, Vienna, (2006).
Google Scholar
[2]
J.P. Marec, Drag Reduction: a Major Task for Research, in: Aerodynamic Drag Reduction Technologies, Springer Berlin Heidelberg, 2001, pp.17-27.
DOI: 10.1007/978-3-540-45359-8_3
Google Scholar
[3]
P.R. Viswanath, Aircraft viscous drag reduction using riblets, Progress in Aerospace Sciences 38 (2002) 571-600.
DOI: 10.1016/s0376-0421(02)00048-9
Google Scholar
[4]
D.W. Bechert, M. Bruse, W. Hage, J.G.T. Van Der Hoeven, G. Hoppe, Experiments on drag-reducing surfaces and their optimization with an adjustable geometry, Journal of Fluid Mechanics 338 (1997) 59-87.
DOI: 10.1017/s0022112096004673
Google Scholar
[5]
Y. Du, G.E. Karniadakis, Suppressing wall turbulence by means of a transverse traveling wave, Science 288 (2000) 1230-1234.
DOI: 10.1126/science.288.5469.1230
Google Scholar
[6]
G.E. Karniadakis, K. -S. Choi, Mechanisms on transverse motions in turbulent wall flows, Annual Review of Fluid Mechanics 35 (2003) 45-62.
Google Scholar
[7]
H. Zhao, J.Z. Wu, J.S. Luo, Turbulent drag reduction by traveling wave of flexible wall, Fluid Dynamics Research 34 (2004) 175-198.
DOI: 10.1016/j.fluiddyn.2003.11.001
Google Scholar
[8]
J. Schijve, F.A. Jacobs, Fatigue tests on unnotched and notched specimens of 2024-T3 Alclad, 2048-T8 Alclad and 7178-T6 extruded material, Nat. Aerospace Laboratory, Amsterdam, (1968).
Google Scholar
[9]
P.R. Edwards, M.G. Earl, A.R.C. Britain, A comparative study of the fatigue performance of notched specimens of clad and unclad aluminium alloy, with and without a pre-stress, Aeron. Res. Council, London, (1977).
Google Scholar
[10]
S. Stanzl-Tschegg, Fracture mechanisms and fracture mechanics at ultrasonic frequencies, Fatigue & Fracture of Engineering Materials & Structures 22 (1999) 567-579.
DOI: 10.1046/j.1460-2695.1999.00180.x
Google Scholar
[11]
Q.Y. Wang, T. Li, X.G. Zeng, Gigacycle Fatigue Behavior of High Strength Aluminum Alloys, in: Fatigue 2010, Elsevier Science Bv, Amsterdam, 2010, pp.65-70.
DOI: 10.1016/j.proeng.2010.03.007
Google Scholar
[12]
T. Li, J. Liu, Q.Y. Wang, Notch size effect on very high cycle fatigue behavior of 2024-T4 aluminum alloy, in: 5th International Conference on Very High Cycle Fatigue, DVM, Berlin, 2011, pp.327-332.
Google Scholar
[13]
H. Mayer, R. Schuller, M. Fitzka, Fatigue of 2024-T351 aluminium alloy at different load ratios up to 1010 cycles, International Journal of Fatigue 57 (2013).
DOI: 10.1016/j.ijfatigue.2012.07.013
Google Scholar
[14]
H.R. Mayer, M. Papakyriacou, R. Pippan, S. Stanzl-Tschegg, Influence of loading frequency on the high cycle fatigue properties of AlZnMgCu1. 5 aluminium alloy, Materials Science and Engineering A314 (2001), 48-54.
DOI: 10.1016/s0921-5093(00)01913-4
Google Scholar
[15]
M.S. Hunter, W.G. Fricke Jr., Metallographic aspects of fatigue behavior of aluminium, in: Proceedings of the American Society for Testing materials, 1954, pp.717-736.
Google Scholar
[16]
S. Stille, J. Pöplau, T. Beck, M. Bambach, G. Hirt, L. Singheiser, Very high cycle fatigue behavior of riblet structured Alclad 2024 thin sheets, International Journal of Fatigue 63 (2014) 183-190.
DOI: 10.1016/j.ijfatigue.2014.01.023
Google Scholar
[17]
G. Hirt, M. Thome, Rolling of functional metallic surface structures, CIRP Annals - Manufacturing Technology 57 (2008) 317-320.
DOI: 10.1016/j.cirp.2008.03.034
Google Scholar
[18]
G. Hirt, M. Thome, Large area rolling of functional metallic micro structures, Production Engineering 1 (2007) 351-356.
DOI: 10.1007/s11740-007-0067-z
Google Scholar
[19]
J. Pöplau, S. Stille, T. Romans, T. Beck, L. Singheiser, G. Hirt, The influence of process parameters on the forming of riblets during riblet rolling, Key Engineering Materials 611-612 (2014) 183-190.
DOI: 10.4028/www.scientific.net/kem.611-612.715
Google Scholar
[20]
S. Stille, T. Beck, L. Singheiser, Influence of riblet geomety on fatigue life of surface structured AA 2024 thin sheets, International Journal of Fatigue 68 (2014) 48-55.
DOI: 10.1016/j.ijfatigue.2014.06.008
Google Scholar
[21]
H. Mayer, Ultrasonic torsion and tension–compression fatigue testing: Measuring principles and investigations on 2024-T351 aluminium alloy, International Journal of Fatigue 28 (2006) 1446-1455.
DOI: 10.1016/j.ijfatigue.2005.05.020
Google Scholar
[22]
S. Kovacs, S. Stille, D. Ernstes, T. Beck, Upgrading of an ultrasonic fatigue testing machine by means of early stage damage detection, MP Materials Testing 55 (2013) 78-83.
DOI: 10.3139/120.110409
Google Scholar
[23]
K.N. Smith, P. Watson, T.H. Topper, A stress-strain function for the fatigue of metals, Journal of Materials 4 (1970) 767-778.
Google Scholar
[24]
S. Usami, Applications of threshold cyclic-plastic-zone-size criterion to some fatigue limit problems, in: International Symposium on Fatigue Thresholds, Stockholm, 1982, pp.205-238.
Google Scholar
[25]
P. Grad, B. Reuscher, A. Brodyanski, M. Kopnarski, E. Kerscher, Mechanism of fatigue crack initiation and propagation in the very high cycle fatigue regime of high-strength steels, Scripta Materialia 67 (2012) 838-841.
DOI: 10.1016/j.scriptamat.2012.07.049
Google Scholar
[26]
A. Bonakdar, F. Wang, J.J. Williams, N. Chawla, Environmental effects on fatigue crack growth in 7075 aluminum alloy, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science 43 (2012) 2799-2809.
DOI: 10.1007/s11661-011-0810-0
Google Scholar