[1]
Z. Mazur, A. Hernández-Rossette, R. García-Illescas, Investigation of the failure of the L-0 blades, Engineering Failure Analysis, 13 (2006) 1338-1350.
DOI: 10.1016/j.engfailanal.2005.10.018
Google Scholar
[2]
W. -Z. Wang, F. -Z. Xuan, K. -L. Zhu, S. -T. Tu, Failure analysis of the final stage blade in steam turbine, Engineering Failure Analysis, 14 (2007) 632-641.
DOI: 10.1016/j.engfailanal.2006.03.004
Google Scholar
[3]
Z. Mazur, R. Garcia-Illescas, J. Porcayo-Calderon, Last stage blades failure analysis of a 28 MW geothermal turbine, Engineering Failure Analysis, 16 (2009) 1020-1032.
DOI: 10.1016/j.engfailanal.2008.05.012
Google Scholar
[4]
Z. Mazur, R. Garcia-Illescas, J. Aguirre-Romano, N. Perez-Rodriguez, Steam turbine blade failure analysis, Engineering Failure Analysis, 15 (2008) 129-141.
DOI: 10.1016/j.engfailanal.2006.11.018
Google Scholar
[5]
R. Ebara, Long-term corrosion fatigue behaviour of structural materials, Fatigue Fract. Eng. Mater. Struct., 25 (2002) 855-859.
DOI: 10.1046/j.1460-2695.2002.00577.x
Google Scholar
[6]
Y. Murakami, S. Kodama, S. Konuma, Quantitative evaluation of effects of non-metallic inclusions on fatigue strength of high strength steels. I: Basic fatigue mechanism and evaluation of correlation between the fatigue fracture stress and the size and location of non-metallic inclusions, International Journal of Fatigue, 11 (1989).
DOI: 10.1016/0142-1123(89)90054-6
Google Scholar
[7]
H. Mughrabi, Fatigue, an everlasting materials problem - still en vogue, Procedia Engineering, 2 (2010) 3-26.
DOI: 10.1016/j.proeng.2010.03.003
Google Scholar
[8]
S.X. Li, Effects of inclusions on very high cycle fatigue properties of high strength steels, Int. Mater. Rev., 57 (2012) 92-114.
DOI: 10.1179/1743280411y.0000000008
Google Scholar
[9]
Y.B. Liu, S.X. Li, Y.D. Li, Z.G. Yang, Factors influencing the GBF size of high strength steels in the very high cycle fatigue regime, Materials Science and Engineering: A, In Press, Corrected Proof (2010).
DOI: 10.1016/j.msea.2010.10.017
Google Scholar
[10]
Q.Y. Wang, C. Bathias, N. Kawagoishi, Q. Chen, Effect of inclusion on subsurface crack initiation and gigacycle fatigue strength, International Journal of Fatigue, 24 (2002) 1269-1274.
DOI: 10.1016/s0142-1123(02)00037-3
Google Scholar
[11]
Z.G. Yang, S.X. Li, Y.D. Li, Y.B. Liu, W.J. Hui, Y.Q. Weng, Relationship among fatigue life, inclusion size and hydrogen concentration for high-strength steel in the VHCF regime, Materials Science and Engineering: A, 527 (2010) 559-564.
DOI: 10.1016/j.msea.2009.10.056
Google Scholar
[12]
H. Mughrabi, Specific features and mechanisms of fatigue in the ultrahigh-cycle regime, International Journal of Fatigue, 28 (2006) 1501-1508.
DOI: 10.1016/j.ijfatigue.2005.05.018
Google Scholar
[13]
T. Sakai, M. Takeda, K. Shiozawa, Y. Ochi, M. Nakajima, T. Nakamura, N. Oguma, Experimental evidence of duplex S-N characteristic's in wide life region for high strength steels, China Higher Education Press Beijing, Beijing, (1999).
Google Scholar
[14]
T. Sakai, Review and Prospects for Current Studies on Very High Cycle Fatigue of Metallic Materials for Machine Structural Use, International Journal of Fatigue, 3 (2009) 425-439.
DOI: 10.1299/jmmp.3.425
Google Scholar
[15]
H.W. Höppel, L. May, M. Prell, M. Göken, Influence of grain size and precipitation state on the fatigue lives and deformation mechanisms of CP aluminium and AA6082 in the VHCF-regime, International Journal of Fatigue, 33 (2011) 10-18.
DOI: 10.1016/j.ijfatigue.2010.04.013
Google Scholar
[16]
K. Shiozawa, T. Hasegawa, Y. Kashiwagi, L. Lu, Very high cycle fatigue properties of bearing steel under axial loading condition, International Journal of Fatigue, 31 (2009) 880-888.
DOI: 10.1016/j.ijfatigue.2008.11.001
Google Scholar
[17]
T. Sakai, Y. Sato, Y. Nagano, M. Takeda, N. Oguma, Effect of stress ratio on long life fatigue behavior of high carbon chromium bearing steel under axial loading, International Journal of Fatigue, 28 (2006) 1547-1554.
DOI: 10.1016/j.ijfatigue.2005.04.018
Google Scholar
[18]
S. Kovacs, T. Beck, L. Singheiser, Influence of mean stresses on fatigue life and damage of a turbine blade steel in the VHCF-regime International Journal of Fatigue, Volume 49, April 2013, Pages 90-99.
DOI: 10.1016/j.ijfatigue.2012.12.012
Google Scholar
[19]
S. Stanzl-Tschegg, Ultrasonic Fatigue, Encyclopedia of Materials: Science and Technology, Second Edition (2001) 9444-9449.
DOI: 10.1016/b0-08-043152-6/01707-1
Google Scholar
[20]
Zhou, Turnbull, Influence of pitting on the fatigue life of a turbine blade steel, Fatigue & Fracture Engineering Materials and Structures, 22 (1999) 1083-1093.
DOI: 10.1046/j.1460-2695.1999.00226.x
Google Scholar
[21]
P. Grad, B. Reuscher, A. Brodyanski, M. Kopnarski, E. Kerscher, Mechanism of fatigue crack initiation and propagation in the very high cycle fatigue regime of high-strength steels, Scripta Materialia, 67 (2012) 838-841.
DOI: 10.1016/j.scriptamat.2012.07.049
Google Scholar
[22]
T. Petersmeier, U. Martin, D. Eifler, H. Oettel, Cyclic fatigue loading and characterization of dislocation evolution in the ferritic steel X22CrMoV121, International Journal of Fatigue, 20 (1998) 251-255.
DOI: 10.1016/s0142-1123(97)00129-1
Google Scholar