VHCF Behavior and Word Hardening of a Ferritic-Martensitic Steel at High Mean Stresses

Article Preview

Abstract:

Low-pressure steam turbine blades undergo VHCF-loadings induced by inhomogenous flow behind the vanes resulting in excitation frequencies of ≈ 2 kHz for rotational speeds of 50 Hz and a typical number of stator vanes of ≈ 60. The VHCF loading is superimposed by considerable mean stresses caused by centrifugal forces. In the present study, the VHCF-behavior of the ferritic-martensitic turbine blade steel X10CrNiMoV12-2-2 is investigated using an ultrasonic fatigue testing system up to cycle numbers of 5∙109 at stress ratios from R = -1 up to 0.7, i.e. up to very high mean stresses. Generally, crack initiation changes from the surface to internal inclusions at fatigue lives around 4∙107. The transition between fatigue failure and run-outs is shifted to higher lifetime with increasing R, and fine grained areas (FGAs) at the crack initiation sites only occur at R < -0.1. However, the fracture mechanics approach proposed by Murakami consistently describes the lifetime behavior for all load ratios over 4 decades of lifetime. At R up from 0.5 considerable cyclic creep occurs, even for lifetimes above 108 cycles, resulting in cyclic hardening which was proved by microhardness measurements at longitudinal sections. This effect at least partially explains the high maximum stresses close to the tensile strength of the material occurring in the VHCF regime at load ratios ≥ 0.5.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

246-254

Citation:

Online since:

September 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z. Mazur, A. Hernández-Rossette, R. García-Illescas, Investigation of the failure of the L-0 blades, Engineering Failure Analysis, 13 (2006) 1338-1350.

DOI: 10.1016/j.engfailanal.2005.10.018

Google Scholar

[2] W. -Z. Wang, F. -Z. Xuan, K. -L. Zhu, S. -T. Tu, Failure analysis of the final stage blade in steam turbine, Engineering Failure Analysis, 14 (2007) 632-641.

DOI: 10.1016/j.engfailanal.2006.03.004

Google Scholar

[3] Z. Mazur, R. Garcia-Illescas, J. Porcayo-Calderon, Last stage blades failure analysis of a 28 MW geothermal turbine, Engineering Failure Analysis, 16 (2009) 1020-1032.

DOI: 10.1016/j.engfailanal.2008.05.012

Google Scholar

[4] Z. Mazur, R. Garcia-Illescas, J. Aguirre-Romano, N. Perez-Rodriguez, Steam turbine blade failure analysis, Engineering Failure Analysis, 15 (2008) 129-141.

DOI: 10.1016/j.engfailanal.2006.11.018

Google Scholar

[5] R. Ebara, Long-term corrosion fatigue behaviour of structural materials, Fatigue Fract. Eng. Mater. Struct., 25 (2002) 855-859.

DOI: 10.1046/j.1460-2695.2002.00577.x

Google Scholar

[6] Y. Murakami, S. Kodama, S. Konuma, Quantitative evaluation of effects of non-metallic inclusions on fatigue strength of high strength steels. I: Basic fatigue mechanism and evaluation of correlation between the fatigue fracture stress and the size and location of non-metallic inclusions, International Journal of Fatigue, 11 (1989).

DOI: 10.1016/0142-1123(89)90054-6

Google Scholar

[7] H. Mughrabi, Fatigue, an everlasting materials problem - still en vogue, Procedia Engineering, 2 (2010) 3-26.

DOI: 10.1016/j.proeng.2010.03.003

Google Scholar

[8] S.X. Li, Effects of inclusions on very high cycle fatigue properties of high strength steels, Int. Mater. Rev., 57 (2012) 92-114.

DOI: 10.1179/1743280411y.0000000008

Google Scholar

[9] Y.B. Liu, S.X. Li, Y.D. Li, Z.G. Yang, Factors influencing the GBF size of high strength steels in the very high cycle fatigue regime, Materials Science and Engineering: A, In Press, Corrected Proof (2010).

DOI: 10.1016/j.msea.2010.10.017

Google Scholar

[10] Q.Y. Wang, C. Bathias, N. Kawagoishi, Q. Chen, Effect of inclusion on subsurface crack initiation and gigacycle fatigue strength, International Journal of Fatigue, 24 (2002) 1269-1274.

DOI: 10.1016/s0142-1123(02)00037-3

Google Scholar

[11] Z.G. Yang, S.X. Li, Y.D. Li, Y.B. Liu, W.J. Hui, Y.Q. Weng, Relationship among fatigue life, inclusion size and hydrogen concentration for high-strength steel in the VHCF regime, Materials Science and Engineering: A, 527 (2010) 559-564.

DOI: 10.1016/j.msea.2009.10.056

Google Scholar

[12] H. Mughrabi, Specific features and mechanisms of fatigue in the ultrahigh-cycle regime, International Journal of Fatigue, 28 (2006) 1501-1508.

DOI: 10.1016/j.ijfatigue.2005.05.018

Google Scholar

[13] T. Sakai, M. Takeda, K. Shiozawa, Y. Ochi, M. Nakajima, T. Nakamura, N. Oguma, Experimental evidence of duplex S-N characteristic's in wide life region for high strength steels, China Higher Education Press Beijing, Beijing, (1999).

Google Scholar

[14] T. Sakai, Review and Prospects for Current Studies on Very High Cycle Fatigue of Metallic Materials for Machine Structural Use, International Journal of Fatigue, 3 (2009) 425-439.

DOI: 10.1299/jmmp.3.425

Google Scholar

[15] H.W. Höppel, L. May, M. Prell, M. Göken, Influence of grain size and precipitation state on the fatigue lives and deformation mechanisms of CP aluminium and AA6082 in the VHCF-regime, International Journal of Fatigue, 33 (2011) 10-18.

DOI: 10.1016/j.ijfatigue.2010.04.013

Google Scholar

[16] K. Shiozawa, T. Hasegawa, Y. Kashiwagi, L. Lu, Very high cycle fatigue properties of bearing steel under axial loading condition, International Journal of Fatigue, 31 (2009) 880-888.

DOI: 10.1016/j.ijfatigue.2008.11.001

Google Scholar

[17] T. Sakai, Y. Sato, Y. Nagano, M. Takeda, N. Oguma, Effect of stress ratio on long life fatigue behavior of high carbon chromium bearing steel under axial loading, International Journal of Fatigue, 28 (2006) 1547-1554.

DOI: 10.1016/j.ijfatigue.2005.04.018

Google Scholar

[18] S. Kovacs, T. Beck, L. Singheiser, Influence of mean stresses on fatigue life and damage of a turbine blade steel in the VHCF-regime International Journal of Fatigue, Volume 49, April 2013, Pages 90-99.

DOI: 10.1016/j.ijfatigue.2012.12.012

Google Scholar

[19] S. Stanzl-Tschegg, Ultrasonic Fatigue, Encyclopedia of Materials: Science and Technology, Second Edition (2001) 9444-9449.

DOI: 10.1016/b0-08-043152-6/01707-1

Google Scholar

[20] Zhou, Turnbull, Influence of pitting on the fatigue life of a turbine blade steel, Fatigue & Fracture Engineering Materials and Structures, 22 (1999) 1083-1093.

DOI: 10.1046/j.1460-2695.1999.00226.x

Google Scholar

[21] P. Grad, B. Reuscher, A. Brodyanski, M. Kopnarski, E. Kerscher, Mechanism of fatigue crack initiation and propagation in the very high cycle fatigue regime of high-strength steels, Scripta Materialia, 67 (2012) 838-841.

DOI: 10.1016/j.scriptamat.2012.07.049

Google Scholar

[22] T. Petersmeier, U. Martin, D. Eifler, H. Oettel, Cyclic fatigue loading and characterization of dislocation evolution in the ferritic steel X22CrMoV121, International Journal of Fatigue, 20 (1998) 251-255.

DOI: 10.1016/s0142-1123(97)00129-1

Google Scholar