[1]
I. Marines, X. Bin, C. Bathias, An understanding of very high cycle fatigue of metals, Int J Fatigue, 25 (2003) 1101-1107.
DOI: 10.1016/s0142-1123(03)00147-6
Google Scholar
[2]
S.E. Stanzl-Tschegg, H. Mayer, A. Stich, Variable amplitude loading in the very high-cycle fatigue regime, Fatigue Fract Eng Mater Struct, 25(2002) 887-896.
DOI: 10.1046/j.1460-2695.2002.00570.x
Google Scholar
[3]
K. Tanaka, Y. Akiniwa, Fatigue crack propagation behavior derived from S–N data in very high cycle regime, Fatigue Fract Eng Mater Struct, 25 (2002) 775-784.
DOI: 10.1046/j.1460-2695.2002.00547.x
Google Scholar
[4]
S. Nishijima, K. Kanazawa, Stepwise S-N curve and fish-eye failure in gigacycle fatigue, Fatigue Fract Eng Mater Struct, 22(1999) 601-607.
DOI: 10.1046/j.1460-2695.1999.00206.x
Google Scholar
[5]
T. Sikai, M. Takeda, K. Shiozawa, et al. Experimental evidence of duplex S-N characteristics in wide life region for high strength steels. In: Wu X R, Wang Z G, eds. , Proceedings of the 7th International Fatigue Congress, Beijing, (1999) 573-578.
Google Scholar
[6]
C. Masuda, S. Nishijima, Y. Tanaka, Relationship between fatigue strength and hardness for high strength steels, Trans. JSME, 52A(1986) 847-852.
Google Scholar
[7]
H. Mughrabi, Specific features and mechanisms of fatigue in the ultrahigh-cycle regime, Int J Fatigue, 28 (2006) 1501-1508.
DOI: 10.1016/j.ijfatigue.2005.05.018
Google Scholar
[8]
M.D. Chapetti, T. Tagawa, T. Miyata, Ultra-long cycle fatigue of high-strength carbon steels part Ⅰ: review and analysis of the mechanism of failure, Mater Sci Eng A, 356 (2003) 227-235.
DOI: 10.1016/s0921-5093(03)00135-7
Google Scholar
[9]
G. Chai, The formation of subsurface non-defect fatigue carck origins, Int J Fatigue, 28(2006) 1533-1536.
DOI: 10.1016/j.ijfatigue.2005.06.060
Google Scholar
[10]
C. Bathias, There is no infinite fatigue life in metallic materials. Fatigue Fract Eng Mater Struct, 22(1999) 559-565.
DOI: 10.1046/j.1460-2695.1999.00183.x
Google Scholar
[11]
Z.G. Yang, S.X. Li, Y.B. Liu, et al. Estimation of the size of GBF area on fracture surface for high strength steels in very high cycle fatigue regime. Int J Fatigue, 30(2008) 1016-1023.
DOI: 10.1016/j.ijfatigue.2007.08.011
Google Scholar
[12]
Y.H. Nie, W.J. Hui, W.T. Fu, Ultra high cycle fatigue behavior of a medium-carbon high strength spring steel NHS1. Acta Metallurgica Sinica, 43(2007) 1031-1036(in Chinese).
Google Scholar
[13]
G. Chai, N. Zhou, Study of crack initiation or damage in very high cycle fatigue using ultrasonic fatigue test and microstructure analysis. Ultrasonics, 53(2013)1406-1411.
DOI: 10.1016/j.ultras.2013.05.008
Google Scholar
[14]
W. Li, T. Sakai, Q. Li, et al. Reliability evaluation on very high cycle fatigue property of GCr15 bearing steel. Int J Fatigue, 32(2010)1096-1107.
DOI: 10.1016/j.ijfatigue.2009.12.008
Google Scholar
[15]
V. Kazymyrovych, J. Bergstrom, C. Burman. The significance of crack initiation stage in very high cycle fatigue of steels[J]. steel research international, 81(2010)308-314.
DOI: 10.1002/srin.200900139
Google Scholar
[16]
Y. Murakami, T. Nomotomo, T. Ueda, Y. Murakami. On the mechanism of fatigue failure in the super long life regime(N>107 cycles). PartⅠ: influence of hydrogen trapped by inclusions. Fatigue Fract Eng Mater Struct, 23(2002)893-902.
DOI: 10.1046/j.1460-2695.2000.00328.x
Google Scholar
[17]
Y. Ochi, T. Matsumura, K. Masakai, et al. High-cycle rotating bending fatigue property in very long-life regime of high-strength steels. Fatigue Fract Eng Mater Struct, 25(2002) 823-830.
DOI: 10.1046/j.1460-2695.2002.00575.x
Google Scholar
[18]
Z.G. Yang, J.M. Zhang, S.X. Li, et al. Relationship among fatigue life, inclusion size and hydrogen concentration for high-strength steel in the VHCF regime. Mater Sci Eng A, 527(2010) 559-564.
DOI: 10.1016/j.msea.2009.10.056
Google Scholar
[19]
Y. Murakami, M. Endo. Effects of defects, inclusions and inhomogeneities on fatigue strength. Int J Fatigue, 16(1994) 163-182.
DOI: 10.1016/0142-1123(94)90001-9
Google Scholar
[20]
Z.G. Yang, J.M. Zhang, S.X. Li, et al. On the critical size of high strength steels under ultra-high cycle fatigue. Mater Sci Eng A, 427(2006) 167-174.
DOI: 10.1016/j.msea.2006.04.068
Google Scholar
[21]
Q.Y. Wang, J.Y. Berard, A. Dubarre, et al. Gigacycle fatigue of ferrous alloys. Fatigue Fract Eng Mater Struct, 22(1999) 667-672.
DOI: 10.1046/j.1460-2695.1999.00185.x
Google Scholar