[1]
Chao He, Chongxiang Huang, Yongjie Liu, Qingyuan Wang, Fatigue damage evaluation of low alloy steel welded joints in fusion zone and heat affected zone based on frequency response changes in gigacycle fatigue, Int. J. of Fatigue. 61 (2014).
DOI: 10.1016/j.ijfatigue.2013.10.018
Google Scholar
[2]
Z. Y. HUANG, Q. Y. WANG, D. WAGNER, et al, A rapid scatter prediction method for very high cycle fatigue, Fatigue Fract. Eng. Mater. Struct. 36 (2012) 462-468.
DOI: 10.1111/ffe.12021
Google Scholar
[3]
Q.Y. Wang, N. Kawagoishi, Q. Chen, Fatigue and fracture behavior of structural Al-alloys up to very long life regimes, Int. J. Fatigue. 28 (2006) 1572-1576.
DOI: 10.1016/j.ijfatigue.2005.09.017
Google Scholar
[4]
Zhiyong Huang, QingYuan Wang, Danièle Wagner, Claude Bathias, A very high cycle fatigue thermal dissipation investigation for titanium alloy TC4, Mater. Sci. & Eng. A. 600 (2014) 153-158.
DOI: 10.1016/j.msea.2014.02.012
Google Scholar
[5]
Huang, Z. Y., Wagner, D., Bathias, C. et al, Cumulative fatigue damage in low cycle fatigue and gigacycle fatigue for low carbon–manganese steel, Int. J. Fatigue. 33(2011) 115-121.
DOI: 10.1016/j.ijfatigue.2010.07.008
Google Scholar
[6]
Zhiyong Huang, Danièle Wagner, Claude Bathias, et al, Subsurface crack initiation and propagation mechanisms in gigacycle fatigue. Acta Mater, 58 (2010) 6046–6054.
DOI: 10.1016/j.actamat.2010.07.022
Google Scholar
[7]
Aiguo Zhao, Jijia Xie, Chengqi Sun, Zhengqiang Lei, Youshi Hong, Effects of strength level and loading frequency on very-high-cycle fatigue behavior for a bearing steel, Int. J. Fatigue. 38 (2012) 46–56.
DOI: 10.1016/j.ijfatigue.2011.11.014
Google Scholar
[8]
S. Schmid, M. Hahn, S. Issler, et al, Effect of frequency and biofuel E85 on very high cycle fatigue behavior of the high strength steel X90CrMoV18, Int. J. Fatigue. 60 (2014) 90-100.
DOI: 10.1016/j.ijfatigue.2013.06.005
Google Scholar
[9]
Isamu Nonaka, Sota Setowaki, Yuji Ichikawa, Effect of load frequency on high cycle fatigue strength of bullet train axle steel, Int. J. Fatigue. 60 (2014) 43-47.
DOI: 10.1016/j.ijfatigue.2013.08.020
Google Scholar
[10]
Benjamin Guennec, Akira Ueno, Tatsuo Sakai, et al, Effect of the loading frequency on fatigue properties of JIS S15C low carbon steel and some discussions based on micro-plasticity behavior, Int. J. Fatigue. 66 (2014) 29-38.
DOI: 10.1016/j.ijfatigue.2014.03.005
Google Scholar
[11]
Luo Yunrong, Wang Qingyuan, Liu Yongjie, et al, Low cycle fatigue properties of steel structure materials Q235 and Q345,J. Sichuan University. 44(2) (2014) 169-175.
Google Scholar
[12]
J. Toribio, B. González, J. C. Matos, Fatigue and fracture paths in cold drawn pearlitic steel, Eng. Frac. Mechanics. 77 (2010) 2024–(2032).
DOI: 10.1016/j.engfracmech.2010.02.003
Google Scholar
[13]
Akhmad A. Korda, Y. Miyashita, Y. Mutoh, T. Sadasue, Fatigue crack growth behavior in ferritic–pearlitic steels with networked and distributed pearlite structures, Int. J. Fatigue. 29 (2007) 1140–1148.
DOI: 10.1016/j.ijfatigue.2006.09.008
Google Scholar
[14]
Mingfei Guan, Hao Yu, Fatigue crack growth behaviors in hot-rolled low carbon steels: A comparison between ferrite–pearlite and ferrite–bainite microstructures, Mater. Sci. Eng. A. 559 (2013) 875–881.
DOI: 10.1016/j.msea.2012.09.036
Google Scholar
[15]
Fu Huimin, Gao Zhentong, Liang Meixun. A method for fitting P-S-N curve, Acta Aeronautica et Astronautica Sinica, 9 (7) (1988) A338-A341.
Google Scholar
[16]
Mayer H, Fatigue crack growth and threshold measurements at very high frequencies, Int. Mat. Review. 44(1) (1999) 1–34.
DOI: 10.1179/imr.1999.44.1.1
Google Scholar