Statistical Estimation of Duplex S-N Curves

Article Preview

Abstract:

In recent years, experimental tests investigating properties of materials in gigacycle regime have suggested modifications to well-known statistical fatigue life models. Classical fatigue life models based on a single failure mode and by the presence of the fatigue limit, have been integrated by models that can take into account the occurrence of two failure modes (duplex S-N curve).Duplex S-N models involve a number of unknown parameters that must be statistically estimated from experimental data. The present paper proposes a simplified and automated procedure for statistical parameter estimation. The procedure is applied to experimental datasets taken from the literature. Parameter estimation is carried out by applying the Maximum Likelihood Principle and by taking into account the possible presence of runout specimens with unequal number of cycles. The application of the procedure permits to estimate different key material parameters (e.g., the characteristic parameters of transition stress and fatigue limit), as well as to statistically predict the failure mode of each tested specimen.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

285-294

Citation:

Online since:

September 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Bathias, P.C. Paris, Gigacycle fatigue in mechanical practice, CRC Dekker, New York, (2005).

Google Scholar

[2] D.G. Harlow, Statistical characterization of bimodal behavior, Acta Mater. 59 (2011) 5048-5053.

DOI: 10.1016/j.actamat.2011.04.062

Google Scholar

[3] C. Bathias, There is no infinite fatigue life in metallic materials, Fatigue Fract. Engng. Mater. Struct. 22 (1999) 559-565.

DOI: 10.1046/j.1460-2695.1999.00183.x

Google Scholar

[4] B. Pyttel, D. Schwerdt, C. Berger, Very high cycle fatigue – Is there a fatigue limit?, Int. J. Fatigue 33 (2011) 49-58.

DOI: 10.1016/j.ijfatigue.2010.05.009

Google Scholar

[5] G.T. Cashman, A statistical methodology for the preparation of a competing modes fatigue design curve, J. Engng. Mater. Technol. 129 (2007) 159-168.

DOI: 10.1115/1.2401619

Google Scholar

[6] T. Sakai, B. Lian, M. Takeda, K. Shiozawa, N. Oguma, Y. Ochi, M. Nakajima, T. Nakamura, Statistical duplex S-N characteristics of high carbon chromium bearing steel in rotating bending in very high cycle regime, Int. J. Fatigue 32 (2010) 497-504.

DOI: 10.1016/j.ijfatigue.2009.08.001

Google Scholar

[7] H. Bomas, K. Burkart, H.W. Zoch, Evaluation of S-N curves with more than one failure mode, Int. J. Fatigue 33 (2011) 19-22.

DOI: 10.1016/j.ijfatigue.2010.04.010

Google Scholar

[8] D.S. Paolino, G. Chiandussi, M. Rossetto, A unified statistical model for S-N fatigue curves: probabilistic definition, Fatigue Fract. Engng. Mater. Struct. 36 (2013) 187-201.

DOI: 10.1111/j.1460-2695.2012.01711.x

Google Scholar

[9] W. Nelson, Accelerated Testing: Statistical Models, Test Plans, and Data Analyses, John Wiley & Sons, New York, (1990).

Google Scholar

[10] F.G. Pascual, W.Q. Meeker, Estimating fatigue curves with the Random Fatigue-Limit Model, Technometrics 41 (1999) 277-290.

DOI: 10.1080/00401706.1999.10485925

Google Scholar

[11] S. Lorén, Fatigue limit estimated using finite lives, Fatigue Fract. Engng. Mater. Struct. 26 (2003) 757-766.

Google Scholar

[12] S. Hanaki, M. Yamashita, H. Uchida, M. Zako, On stochastic evaluation of S-N data based on fatigue strength distribution, Int. J. Fatigue, 32 (2010) 605-609.

DOI: 10.1016/j.ijfatigue.2009.06.001

Google Scholar

[13] NIMS Fatigue Data Sheet No. 98, Data sheet on giga-cycle fatigue properties of Ti-6Al-4V (1100 MPa class) titanium alloy, National Institute for Materials Science, Tokyo, (2005).

Google Scholar