[1]
Murakami, Yu. Metals Fatigue: Effects of Small Defects and Nonmetallic inclusions. Elsevier Ltd, London, UK, (2002).
Google Scholar
[2]
Bathias, C., Paris, C.P. Gigacycle fatigue in mechanical practice. Marcel Dekker, NY, USA, (2004).
Google Scholar
[3]
Sakai, T., Li, W., Lian, B., Oguma, N. Review and new analyses of fatigue crack initiation mechanisms of interior inclusion-induced fracture of high strength steels in very high cycle regime, In: Proc. of the Int. Conf. VHCF5, (C. Berger and H. -J. Christ Eds. ), DVM, June 28-30, 2011, Berlin, Germany, (2011).
Google Scholar
[4]
Edited by Allison, J.E., Jones, J.W., Larsen, J.M., Ritchie, R.O. Proc. of Fourth International Conference on Very High Cycle Fatigue, VHCF5, August 19-22, 2007. University of Michigan, Ann-Arbour, Michigan, USA, (2007).
Google Scholar
[5]
Shanyavskiy, A.A. Modelling of metals fatigue cracking. Synergetics in aviation. Ufa, Monograph, Russia, (2007).
Google Scholar
[6]
Mughrabi H. On multi-stage fatigue life diagrams and the relevant life-controlling mechanisms in ultrahigh-cycle fatigue. Fatigue Fract Engng Mater Struct 25 (2002), p.755–64.
DOI: 10.1046/j.1460-2695.2002.00550.x
Google Scholar
[7]
Shiozawa K., Morii Y., Nishino S., Lu L. Subsurface crack initiation and propagation mechanism in high-strength steel in a very high cycle fatigue regime. Int. J. Fatigue, 28 (2006) p.1521–1532.
DOI: 10.1016/j.ijfatigue.2005.08.015
Google Scholar
[8]
Eds Sakai T. and Ochi Y. Proceedings of the VHCF-3, the third international conference on very high cycle fatigue, September 2004, Kyoto (Japan); (2004).
DOI: 10.1016/j.ijfatigue.2006.02.045
Google Scholar
[9]
Takeuchi E., Furuya Y., Nagashima N., Matsuoka S. The effect of frequency on the gigacycle fatigue properties of a Ti–6Al–4V alloy. Fatigue Fract Engng Mater Struct 31, (2008), p.599–605.
DOI: 10.1111/j.1460-2695.2008.01257.x
Google Scholar
[10]
Shanyavskiy A.A. Bifurcation diagram for in-service fatigued metals. Original Research Article, Procedia Engineering, 2(1) (2010), pp.241-50.
DOI: 10.1016/j.proeng.2010.03.026
Google Scholar
[11]
Shanyavskiy A.A., Zaharova T.P. The nature of multi-modal distribution fatigue durability for titanium alloy VT9. Proc. of Fourth International Conference on Very High Cycle Fatigue, VHCF5, (Allison, J.E., Jones, J.W., Larsen, J.M., Ritchie, R.O., Eds), August 19-22, 2007, University of Michigan, Ann-Arbour, Michigan, USA, (2007).
Google Scholar
[12]
Harlow D.G. Data fusion and science based modeling: a technique for very high cycle fatigue predictions. Proc. of Fourth International Conference on Very High Cycle Fatigue, VHCF5, August 19-22, 2007, Edited by Allison, J.E., Jones, J.W., Larsen, J.M., Ritchie, R.O., University of Michigan, Ann-Arbour, Michigan, USA, (2007).
Google Scholar
[13]
Haken G. Synergetics. Hierarchy of non-stability in self-organized systems and equipments. Moscow, Peace, (translated in Russia), (1985).
Google Scholar
[14]
Mughrabi H. Microstructural fatigue mechanisms: Cyclic slip irreversibility, crack initiation, non-linear elastic damage analysis. International Journal of Fatigue, (2012) (in press).
DOI: 10.1016/j.ijfatigue.2012.06.007
Google Scholar
[15]
Ko H-N. Itoga H., Tokaji K., Nakajima M. In: Proc. Fatigue 2002 (Ed Bloom A.F. ), Stockholm, Sweden, 2002, pp.2533-2540.
Google Scholar
[16]
Ebara R., Yamada Y., Goto A. In: Proc. First Intern. Conf. Fatigue and Corrosion Fatigue Up to Ultrasonic Frequencies (Eds Wells J.M., Buck O., Roth L.D., Tien J.E. ), The Metall. Soc. AIME, 1982, pp.349-365.
Google Scholar
[17]
Nakamura T., Noguchi T., Kaneko M., Kazami S. The effect of high vacuums on surface and interior originated fatigue fractures in Ti-6Al-4V. In: Proc. 7th Intern. Fatigue Congress, Fatigue' 99, (Eds Wu X.R. and Wang Z.G. ), v. 4, (1999).
Google Scholar
[18]
Suh C. -M., Hawing B.W., Kim S.C., Lee T.S. A study on the fatigue characteristics of bearing steel in gigacycles. In: Proc. of the VHCF-3, the third international conference on very high cycle fatigue, (Eds Sakai T. and Ochi Y. ), September 2004, Kyoto (Japan), 2004, pp.593-600.
DOI: 10.1016/j.ijfatigue.2006.02.045
Google Scholar
[19]
Panin V.E., Sergeev V.P., Panin A.V. Nanostructure's formation in surface layers of structural materials and covering of nano structured coats. Tomsk: Polytechnic University (Russia); (2008).
Google Scholar
[20]
Panin, V.E., Egorushkin, V.E. Physical meso-mechanics and non-equilibrium thermodynamics as a methodological basis for nano-material science. Phys. Mesomech, 12(4) (2009), pp.10-23.
Google Scholar
[21]
Nakajima N., Ramiya N., Itoga H., Tokaji K., and Ko H. -N. Experimental examination of crack initiation lives and fatigue limit in subsurface fracture of high carbon chromium steel. In: Proc. of the VHCF-3, the third international conference on very high cycle fatigue, (Eds Sakai T. and Ochi Y. ), September 2004, Kyoto (Japan), 2004, pp.169-176.
DOI: 10.1016/j.ijfatigue.2005.05.017
Google Scholar
[22]
Liantao L., Kazuaki S. Effect of two-step load variation on gigacycle fatigue and internal crack growth behavior of high carbon-chromium bearing steel. ibid, pp.185-192.
Google Scholar
[23]
Shanyavskiy A.A. The effects of loading waveform and microstructure on the fatigue response of Ti–6Al–2Sn–4Zn–2Mo alloy. Fatigue Fract Engng Mater Struct 28, (2005), p.195–204.
DOI: 10.1111/j.1460-2695.2004.00844.x
Google Scholar
[24]
Shanyavskiy, A.A. Fatigue cracking of smooth and notched specimens of compacted superalloy EP741 NP in high- and very-high-cycle-fatigue regime, In: Proc. of the Int. Conf. VHCF5 (C. Berger and H. -J. Christ Eds. ), DVM, June 28-30, 2011, Berlin, Germany, (2011).
Google Scholar
[25]
Alymov, V.T., Fishgoit, A.V., Shashurin, G.V., and Khrushchov, M.M. Fracture simulation for granulated nickel-based alloy under low-cycle fatigue. Zavodskaya Laboratoria, (in Russian), 73(4) (2007), p.52–5.
Google Scholar
[26]
Nishijima, S. and Kanazawa, K., Stepwise S-N curve and fish-eye failure in gigacycle fatigue. Fatigue & Fracture of Engineering Materials & Structures, Vol. 22 (7), 1999, pp.601-607.
DOI: 10.1046/j.1460-2695.1999.00206.x
Google Scholar
[27]
Shanyavskiy, A.A. Mechanisms and modeling of subsurface fatigue cracking in metals. Engng Fract. Mech., 110 (2013), pp.350-363.
DOI: 10.1016/j.engfracmech.2013.05.013
Google Scholar
[28]
Nakamura T., Oguma H., Yokoyama S., Noguchi T. Characteristics of initial crack propagation process of Ti-6Al-4V very high cycle fatigue. In: Proc. of the VHCF-3, the third international conference on very high cycle fatigue, (Eds Sakai T. and Ochi Y. ), September 2004, Kyoto (Japan), 2004, pp.201-208.
DOI: 10.1016/j.ijfatigue.2006.02.045
Google Scholar
[29]
Kanazawa K., Nishijima S., Fatigue fracture of low alloy steel at ultra-high-cycle region under elevated temperature condition. In: Proc. ECF12 Fracture from defects, (Eds. Brown, M.W., de los Rios, E.R., and Miller, K.J. ), EMAS Publishing, UK, v. 1, (1998).
Google Scholar
[30]
Shanyavskiy, A., Banov, M. The twisting mechanism of subsurface fatigue cracking in Ti–6Al–2Sn–4Zr–2Mo–0. 1Si alloy. Engineering Fracture Mechanics, 77 (2010), p.1896–(1906).
DOI: 10.1016/j.engfracmech.2010.04.011
Google Scholar
[31]
Wang, C., Nikitin, A., Shanyavskiy, A., Bathias, C. An understanding of crack growth in VHCF from an internal inclusion in high strength steel. In: Proceed. of the 4-th Intern. Conf. on Crack Paths (CP 2012, ), (Andrea Carpinteri, Andrea Spagnoli Eds), Gaeta (Italy), 19-21 September, (2012).
Google Scholar
[32]
Jha S.K., Larsen J.M. Random heterogeneity and probabilistic description of the long-lifetime regime of fatigue. In: Proc. of Fourth International Conference on Very High Cycle Fatigue, VHCF5, August 19-22, 2007, Edited by Allison, J.E., Jones, J.W., Larsen, J.M., Ritchie, R.O., University of Michigan, Ann-Arbour, Michigan, USA, (2007).
Google Scholar
[33]
Miao J., Pollock T.M., Jones J.W. Very high cycle fatigue of nickel-base superalloy Rene 88DT at 593oC. In: Proc. of Fourth International Conference on Very High Cycle Fatigue, VHCF5, (Allison, J.E., Jones, J.W., Larsen, J.M., Ritchie, R.O., Eds. ), August 19-22, 2007, University of Michigan, Ann-Arbour, Michigan, USA, (2007).
Google Scholar
[34]
Berger C., Pyttel B., and Trossmann J.: Intern. J. Fatigue, 28 (2006), pp.1640-48.
Google Scholar
[35]
Shaniavskiy A. Mechanisms of the 2024-T351 Al-Alloy Fatigue Cracking in Bifurcation Area after Laser Shocks Hardening Procedure. Key Engineering Materials, 465 (2011), pp.511-514.
DOI: 10.4028/www.scientific.net/kem.465.511
Google Scholar
[36]
Tyumetsev A.N., А.Н., Ditenberg I.A. Nano-dipoles of partly disclinations as bearer of quasi-ductile Mode of deformation, and nanocrystalline structures formation under intensive deformation metals and alloys. Phys. Mesomeh., 14(3) (2011).
DOI: 10.1016/j.physme.2011.12.004
Google Scholar