[1]
Daido Steel, Annual Report 2009, Research and Development, (2009), p.10.
Google Scholar
[2]
Edited by Society of Powder Technology, Japan, Compressive Molding Technology of Powder, Nikkan Kogyo Shimbun Ltd., (1998), p.3.
Google Scholar
[3]
APhA, Tableting Specification Manual (Seventh Edition), Section 4, Tool Steels, Compression Forces, and Fatigue Failure, (2006), p.77.
Google Scholar
[4]
R. E. Peterson, Stress Concentration Design Factors, John Wiley & Sons, Inc., New York, (1962), p.50.
Google Scholar
[5]
T. Sakai, T. Furusawa, R. Takizawa, N. Oguma, H. Hohjo, H. Ikuno, Development of multi-type high efficiency fatigue testing machines in rotating bending and axial loading, Proceedings of the Hael Mughrabi Honorary Symposium, TMS Annual Meeting, (2008).
Google Scholar
[6]
T. Yamamoto, A. Kokubu, T. Sakai, I. Kiyama, Y. Nakamura, Development and fundamental performance of dual-spindle rotating bending fatigue testing machine with special device providing corrosive environments, Proceedings of VHCF-5, (2011).
Google Scholar
[7]
T. Sakai (Chair of Editorial Committee) et al., Standard evaluation method of fatigue reliability for metallic materials -Standard regression method of S-N curves-, JSMS-SD-11-07, JSMS, (2007).
Google Scholar
[8]
T. Sakai, B. Lian, M. Takeda, K. Shiozawa, N. Oguma, Y. Ochi, M. Nakajima, T. Nakamura, Statistical duplex S-N characteristics of high carbon chromium bearing steel in rotating bending in very high cycle regime, International Journal of Fatigue, Vol. 32, No. 3 (2010).
DOI: 10.1016/j.ijfatigue.2009.08.001
Google Scholar
[9]
T. Sakai, Review and prospects for current studies on very high cycle fatigue of metallic materials for machine structural use", Journal of Solid Mechanics and Materials Engineering, Vol. 3, No. 3, (2009), pp.425-439.
DOI: 10.1299/jmmp.3.425
Google Scholar
[10]
T. Sakai, Y. Sato, N. Oguma, Characteristic S-N properties of high-carbon-chromium-bearing steel under axial loading in long-life fatigue, Fatigue and Fracture of Engineering Materials & Structures, Vol. 25, (2002), pp.765-773.
DOI: 10.1046/j.1460-2695.2002.00574.x
Google Scholar
[11]
W. Li, T. Sakai, M. Wakita and S. Mimura, Influence of microstructure and surface defect on very high cycle fatigue properties of clean spring steel, International Journal of Fatigue, Vol. 60, (2014), pp.48-56.
DOI: 10.1016/j.ijfatigue.2013.06.017
Google Scholar
[12]
J. Goodman, Mechanics Applied to Engineering, Longmans, Green, and Co., London, (1908), pp.537-540.
Google Scholar
[13]
Y. Nakai et al., Strength and Fracture of Materials, The Society of Materials Science, Japan, (2005), pp.99-100.
Google Scholar
[14]
T. Sakai et al., Engineering Design of Machines, The Society of Materials Science, Japan, (2013), pp.56-59.
Google Scholar
[15]
T. Sakai, Y. Sato, Y. Nagano, M. Takeda and N. Oguma, Effect of stress ratio on long life fatigue behavior of high carbon chromium bearing steel under axial loading, International Journal of Fatigue, Vol. 28, No. 11 (2006), pp.1547-1554.
DOI: 10.1016/j.ijfatigue.2005.04.018
Google Scholar
[16]
N. Oguma, B. Lian, T. Sakai, K. Watanabe, Y. Odake, Long life fatigue fracture induced by interior inclusions for high carbon chromium bearing steels under rotating bending, J. ASTM International, Vol. 7, No. 9, (2010), pp.1-9.
DOI: 10.1520/jai102540
Google Scholar
[17]
W. Li, T. Sakai, Q. Li, L. Lu, P. Wang, Reliability evaluation on very high cycle fatigue property of GCr15 bearing steel, International Journal of Fatigue, Vol. 32, No. 7, (2010), pp.1096-1107.
DOI: 10.1016/j.ijfatigue.2009.12.008
Google Scholar
[18]
A. Zhao, J. Xie, C. Sun, Z. Lei and Y. Hong, Prediction of threshold value for FGA formation, Materials Science and Engineering, A, 528 (2011), pp.6872-6877.
DOI: 10.1016/j.msea.2011.05.070
Google Scholar
[19]
Z. Lei, Y. Hong, J. Xie, C. Sun and A. Zhao, Effect of inclusion size and location on very-high-cycle fatigue behavior for high strength steels, Materials Science and Engineering, A, 558 (2012), pp.234-241.
DOI: 10.1016/j.msea.2012.07.118
Google Scholar