Dislocations Gliding Study by IR Thermography in C-Mn Steels with Different Solute Atoms Content in the Gigacycle Fatigue Domain

Article Preview

Abstract:

Tests were performed on two Carbon-Manganese steels (A42 and A48 steels, French standard) in the gigacycle fatigue domain thanks to a piezoelectric fatigue machine working at 20000Hz. During the tests, temperature recordings were achieved by an infrared camera for various stress amplitudes. The main difference between the two steels compositions was the aluminum content (0.045% for the A42 steel and 0.004% for the A48 steel), and the carbon content (0.140% for the A 42 steel and 0.198% for the A48 steel). In the A48 steel, the few aluminum content induces a higher free content of solute nitrogen in the lattice. Mechanical spectroscopy tests were performed and gave qualitative results on the solute contents repartition in the lattice. The temperature increase recorded during the fatigue tests for the two steels are different at the beginning of the tests. The differences can be explained by the different repartition of the solute atoms which induces a different dislocation gliding between the two materials. At the end of the tests, the thermal recordings are similar and attributed to the evolution of the solute atoms repartition and the dislocation structure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

177-187

Citation:

Online since:

September 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Wang, D. Wagner, C. Bathias - Fatigue crack initiated from PSB at VHCF in Iron, International Congress on Fracture, Beijing, Chine, 16-21 juin (2013).

Google Scholar

[2] C. Wang, A. Blanche, D. Wagner, A. Chrysochoos, C. Bathias, Dissipative and microstructural effects associated with fatigue crack initiation on an Armco iron, Int. Jl fatigue, 58 (2014) 152-157.

DOI: 10.1016/j.ijfatigue.2013.02.009

Google Scholar

[3] D. Wagner, N. Ranc, C. Bathias, P.C. Paris, Fatigue crack initiation detection by an infrared thermography method, Fat. Fract. Engng Mater Struct 33 (2009)12-21.

DOI: 10.1111/j.1460-2695.2009.01410.x

Google Scholar

[4] D. Wagner, N. Ranc, Self heating of materials during mechanical solicitations: a mean to understand the damage mechanism. SEM Fall Conference and International Symposium on Intensive loading and its effects, 19-22 oct 2014, Beijing, Chine.

Google Scholar

[5] C. Wang, D. Wagner, C. Bathias - Study of fatigue crack mechanism on an armco iron in the gigacycle fatigue by temperature recording and microstructural observations, International Congress on Fracture, Beijing, Chine, 16-21 juin (2013).

DOI: 10.1016/j.ijfatigue.2012.06.005

Google Scholar

[6] D. Wagner, J.C. Moreno, C. Prioul, Vieillissement dynamique dans les joints soudés d'aciers au C-Mn : influence de quelques paramètres métallurgiques sur le comportement en traction, Revue de Métallurgie-CIT/SGM, 12 (décembre 2000)1481-1500.

Google Scholar

[7] D. Wagner, J.C. Moreno, C. Prioul, Dynamic Strain Aging Sensitivity of Heat Affected Zones in C-Mn Steels, J. of Nucl. Mat., Volume 252-3 (février 1998) 257-265.

DOI: 10.1016/s0022-3115(97)00279-1

Google Scholar

[8] L. Chen, N.M. Van der Pers, A. Bottger, Th.H. De Keijser, E.J. Mittemeijer, Lattice changes of iron-nitrogen martensite on ageing at room temperature, Met. Trans. A, 21A (1990) 2857-2867.

DOI: 10.1007/bf02647206

Google Scholar

[9] L. Chen, N.M. Van der Pers, A. Bottger, Th.H. De Keijser, E.J. Mittemeijer, Lattice changes of iron-carbon martensite on ageing at room temperature, Met. Trans. A, 22A (1991) 1957-(1967).

DOI: 10.1007/bf02669863

Google Scholar

[10] L. Chen, A. Bottger, E.J. Mittemeijer, Tempering of iron-carbon-nitrogen martensites, Met. Trans. A, 23A (1992) 1129-1145.

DOI: 10.1007/bf02665045

Google Scholar

[11] P. Fergusson, K.H. Jack, Quench ageing and strain ageing of nitrogen ferrite. Proc Heat Treatment Conf., Ed. The Metals Society, Birmingham (1981) 158.

Google Scholar

[12] D. Wagner, N. Roubier, C. Prioul, Measurement of sensitivity to dynamic strain aging in C-Mn steels by internal friction method, Mat. Sc and Technology, Vol 22-3(2006) 301-307.

DOI: 10.1179/174328406x86155

Google Scholar

[13] J. D. Fast, Mét. Cor. Ind. 435, (1961) 383.

Google Scholar

[14] C. Bathias, P.C. Paris, Gigacycle fatigue in mechanical practice. Marcel Dekker, New York, (2005).

Google Scholar

[15] N. Ranc, D. Wagner, P.C. Paris, Study of thermal effects associated with crack propagation during very high cycle fatigue, Acta Materiala 56 (2008) 4012-4021.

DOI: 10.1016/j.actamat.2008.04.023

Google Scholar

[16] M.S. Blanter, I.S. Golovin, H. Neuhäuser, H.R. Sinning, Internal Friction in Metallic Materials-a Handbook, Springer, Berlin, (2007).

DOI: 10.1007/978-3-540-68758-0

Google Scholar

[17] B. Jaoul, Etude de la plasticité et application aux métaux, Mines Paris Tech Les Presses, Paris, (2008).

Google Scholar

[18] D.V. Wilson, J.K. Tromans, Effect of strain ageing on fatigue damage in low carbon steel, Acta Met. 18 (1970) 1197-1208.

DOI: 10.1016/0001-6160(70)90110-0

Google Scholar

[19] C. Wang, PhD Thesis, Microplasticité et dissipation en fatigue à très grand nombre de cycles du fer et de l'acier, 7 juin 2014, Université Paris Ouest, France.

Google Scholar