[1]
Y. Murakami, N.N. Yokoyama, J. Nagata, Mechanism of fatigue failure in ultra long life regime. Fatigue Fract Eng Mater Struct, 25 (2002) 735-746.
DOI: 10.1046/j.1460-2695.2002.00576.x
Google Scholar
[2]
Z.Y. Huang, D. Wagner Q.Y. Wang, C. Bathias, Effect of carburizing treatment on the fish eye, crack growth for a low alloyed chromium steel in very high cycle fatigue. Materials Science and Engineering A, 559 (2013) 790-797.
DOI: 10.1016/j.msea.2012.09.025
Google Scholar
[3]
Y.S. Hong, Z.Q. Lei, C.Q. Sun, A.G. Zhao, Propensities of crack interior initiation and early growth for very-high-cycle fatigue of high strength steels. Int J Fatigue, 58 (2014) 144-151.
DOI: 10.1016/j.ijfatigue.2013.02.023
Google Scholar
[4]
K. Shiozawa, L. Lu, S. Ishihara, S-N curve characteristics and subsurface crack initiation behaviour in ultra-long life fatigue of a high carbon-chromium bearing steel. Fatigue Fract Eng Mater Struct, 24 (2001) 781-790.
DOI: 10.1046/j.1460-2695.2001.00459.x
Google Scholar
[5]
T. Sakai, Y. Sato, N. Oguma, Charactristic S-N properties of high-carbon-chormium-bearing steel under axial loading in long-life fatigue. Fatigue Fract Eng Mater Struct, 25 (2002) 765-773.
DOI: 10.1046/j.1460-2695.2002.00574.x
Google Scholar
[6]
G.A. Qian, C.E. Zhou, Y.S. Hong, A model to predict S-N curves for surface and subsurface crack initiations in different environmental media. Int J Fatigue, (2013) 1-10.
DOI: 10.1016/j.ijfatigue.2013.11.013
Google Scholar
[7]
A.G. Zhao, J.J. Xie, C.Q. Sun, Z.Q. Lei, Y.S. Hong, Effects of strength level and loading frequency on very-high-cycle fatigue behavior for a bearing steel. Int J Fatigue, 38 (2012) 46-56.
DOI: 10.1016/j.ijfatigue.2011.11.014
Google Scholar
[8]
S. Nishijima, K. Kanazawa, Stepwise S-N curve and fish-eye failure in gigacycle fatigue. Fatigue Fract Eng Mater Struct, 22 (1999) 601-607.
DOI: 10.1046/j.1460-2695.1999.00206.x
Google Scholar
[9]
M. k. Khan, Q.Y. Wang, Investigation of crack initiation and propagation behavior of AISI\3stainless steel up to very high cycle fatigue. Int J Fatigue, 54 (2013) 38-46.
DOI: 10.1016/j.ijfatigue.2013.04.009
Google Scholar
[10]
Y. Yu, J.L. Gu, F.L. Shou, L. Xu, B.Z. Bai, Y.B. Liu, Competition mechanism between microstructure type and inclusion level in determining VHCF behavior of bainite/martensite dual phase steels. Int J Fatigue, 33 (2011) 500–506.
DOI: 10.1016/j.ijfatigue.2010.10.004
Google Scholar
[11]
L. Trško, O. Bokuvka, F. Novy, M. Guagliano, Effect of severe shot peening on ultra-high-cycle fatigue of a low-alloy steel. Materials & Design, 57 (2014) 103-113.
DOI: 10.1016/j.matdes.2013.12.035
Google Scholar
[12]
J.W. Zhang, L.T. Lu, K. Shiozawa, W.N. Zhou, W.H. Zhang, Effects of nitrocarburizing on fatigue property of medium carbon steel in very high cycle regime. Materials Science and Engineering A, 528 (2011) 7060-7067.
DOI: 10.1016/j.msea.2011.05.029
Google Scholar
[13]
J.W. Zhang, L.T. Lu, K. Shiozawa, Effect of nitrocarburizing and post-oxidation on fatigue behavior of 35CrMo alloy steel in very high cycle fatigue regime. Int J Fatigue, 33 (2011) 880-886.
DOI: 10.1016/j.ijfatigue.2011.01.016
Google Scholar
[14]
W. Li, T. Sakai, P. Wang, Influence of Microstructural Inhomogeneity and Residual Stress on Very High Cycle Fatigue Property of Clean Spring Steel. Journal of Materials Engineering and Performance, 22 (2013) 2594-2601.
DOI: 10.1007/s11665-013-0535-x
Google Scholar
[15]
H. Mughrabi, On multi-stage, fatigue life diagrams and the relevant life-controlling mechanisms in ultrahigh-cycle fatigue. Fatigue Fract Eng Mater Struct, 25 (2002) 755-764.
DOI: 10.1046/j.1460-2695.2002.00550.x
Google Scholar
[16]
G.T. Cashman, A review of Competing Modes fatigue behavior. Int J Fatigue, 32 (2010) 492-496.
DOI: 10.1016/j.ijfatigue.2009.04.018
Google Scholar
[17]
H.Q. Xue, C. Bathias, Crack path in torsion loading in very high cycle fatigue regime. Engineering Fracture Mechanics, 77 (2010) 1866-1873.
DOI: 10.1016/j.engfracmech.2010.05.006
Google Scholar
[18]
W. Li, H. Yuan, Z.D. Sun, Z.Y. Zhang, Surface vs. interior failure behaviors in a structural steel under gigacycle fatigue: Failure analysis and life prediction. Int J Fatigue, 64 (2014) 42-53.
DOI: 10.1016/j.ijfatigue.2014.02.022
Google Scholar
[19]
G.A. Qian, Z.G. Zhou, Experimental and theoretical investigation of environmental media on very-high-cycle fatigue behavior for a structural steel. Acta Materialia, 59 (2011) 1321-1327.
DOI: 10.1016/j.actamat.2010.10.064
Google Scholar
[20]
C. Sun, J. Xie, A. Zhao, Z. Lei, Y. Hong, A cumulative damage model for fatigue life estimation of high-strength steels in high-cycle and very-high-cycle fatigue regimes. Fatigue Fract Eng Mater Struct, 35 (2012) 638-647.
DOI: 10.1111/j.1460-2695.2011.01658.x
Google Scholar
[21]
T. Sakai, Proceedings of the 4th international conference on very high cycle fatigue, Michigan, USA, 2007, 3-12.
Google Scholar
[22]
Y. Nakamura, T. Sakai, H. Hirano, K.S.R. Chandran, Effect of alumite surface treatments on long-life fatigue behavior of a cast aluminum in rotating bending. Int J Fatigue, 32 (2010) 621-626.
DOI: 10.1016/j.ijfatigue.2009.10.002
Google Scholar
[23]
P. Grad, B. Reuscher, A. Brodyanski, Mechanism of fatigue crack initiation and propagation in the very high cycle fatigue regime of high-strength steels. Scripta Materialia, 67 (2012) 838-841.
DOI: 10.1016/j.scriptamat.2012.07.049
Google Scholar
[24]
Y. Murakami, S. Kodama, S. Konuma, Quantitative evaluation of effects of non-metallic inclusions on fatigue strength of high strength steels. I: Basic fatigue mechanism and evaluation of correlation between the fatigue fracture stress and the size and location of non-metallic inclusions. Int J Fatigue, 11 (1989).
DOI: 10.1016/0142-1123(89)90054-6
Google Scholar
[25]
R. Pippan, B. Tabering, E. Gach, Non-propagation conditions for fatigue cracks and fatigue in the very high-cycle regime. Fatigue Fract Eng Mater Struct, 25 (2002) 805-811.
DOI: 10.1046/j.1460-2695.2002.00568.x
Google Scholar
[26]
W. Li, P. Wang, L.T. Lu, T. Sakai, Evaluation of gigacycle fatigue limit and life of high-strength steel with interior inclusion-induced failure. International Journal of Damage Mechanics, 23 (2014) 1-18.
DOI: 10.1177/1056789513520175
Google Scholar
[27]
T. Sakai, Review and prospects for current studies on very high cycle fatigue of metallic materials for machine structural use. J. Solid Mech. Mater. Eng., 3 (2009) 425-439.
DOI: 10.1299/jmmp.3.425
Google Scholar
[28]
Y.B. Liu, Z.G. Yang, Y.D. Li, On the formation Of GBF of high-strength steels in the very high cycle fatigue regime. Material Science and Engineering A, 497 (2008) 408-415.
DOI: 10.1016/j.msea.2008.08.011
Google Scholar
[29]
G.Y. Li, T.C. Hu, H.Y. Huai, H.C. Yan, T.X. Dong, Main Characteristics of Ultra-high Cycle Fatigue Failure of Metal Materials. Failure analysis and prevention, 6 (2011) 193-199. ( in chinese).
Google Scholar
[30]
S.S. Tschegg, Fatigue crack growth and thresholds at ultrasonic frequencies. Int J Fatigue, 28 (2006) 1456-1464.
DOI: 10.1016/j.ijfatigue.2005.06.058
Google Scholar
[31]
C. Bathias, There is no infinite fatigue life in metallic materials. Fatigue Fract Eng Mater Struct, 22 (1999) 559-565.
DOI: 10.1046/j.1460-2695.1999.00183.x
Google Scholar
[32]
I. Nonaka, S. Setowaki, Y.J. Ichikawa, Effect of load frequency on high cycle fatigue strength of bullet train axle steel. Int J Fatigue, 60 (2014) 43-47.
DOI: 10.1016/j.ijfatigue.2013.08.020
Google Scholar
[33]
C. Bathias, P.C. Paris, Gigacycle Fatigue of Metallic Aircraft Components. Int J Fatigue, 32 (2010) 894-897.
DOI: 10.1016/j.ijfatigue.2009.03.015
Google Scholar