VHCF Strength of Helical Compression Springs - Influence of Heat Treatment Temperature before Shot Peening

Article Preview

Abstract:

Previous fatigue tests show that the heat treatment temperature has a significant influence on high cycle fatigue behaviour of helical compression springs. In order to investigate the effect of the heat treatment temperature on the fracture behaviour and the cyclic life, fatigue tests in the very high cycle regime (VHCF) were conducted.The tested springs were manufactured from oil hardened and tempered SiCr-alloyed valve spring steel wire with a diameter of d = 1.6 mm. After winding and grinding of the spring endings, the springs were heat treated at either 360°C or 400°C for 30 minutes. In order to generate compressive residual stresses in the surface area, the springs were shot peened. After shot peening, the springs were again annealed at 240°C for 30 minutes.Fatigue tests were conducted at 40 Hz using a special spring fatigue device. Up to 900 springs were tested simultaneously at various stress levels to 5∙108 or 109 cycles. Fractured springs were investigated by means of a stereomicroscope as well as a scanning electron microscope to analyse the fracture behaviour and failure mechanisms. The vast majority of the springs show crack initiation at the surface at the inner side of the coil. Less frequently, crack initiation occurs at subsurface locations. Our results show that heat treatment at a temperature of 360°C leads to four times more subsurface cracks than at a temperature of 400°C and reduces the overall fatigue life time.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

140-149

Citation:

Online since:

September 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Kaiser, Untersuchungen der Dauerhubfestigkeit von Schraubenfedern im Bereich extrem hoher Schwingspielzahlen. TU Darmstadt, IGF-Nr. 15064 N, 2010. Final report.

DOI: 10.1002/mawe.201000678

Google Scholar

[2] I. Brunner, M. Oechsner, Untersuchung von Werkstoff- und Fertigungseinflüssen auf das VHCF-Verhalten von Schraubendruckfedern. Technische Universität Darmstadt, Final report, AiF 16873 N, (2014).

Google Scholar

[3] B. Kaiser, Beitrag zur Dauerhaltbarkeit von Schraubendruckfedern unter besonderer Berücksichtigung des Oberflächenzustandes, Dissertation, Technische Hochschule Darmstadt, (1981).

Google Scholar

[4] Scherdel Federfibel – Berechnungsgrundlagen und Anwendungen, 7. Aufl., (2010).

Google Scholar

[5] DIN EN 13906-1, Zylindrische Schraubendruckfedern aus runden Drähten und Stäben – Berechnung und Konstruktion, Teil 1: Druckfedern, Beuth Verlag GmbH, (2002).

DOI: 10.31030/1091014

Google Scholar

[6] R. Reich, Lebensdauervorhersage von Schraubendruckfedern. Technische Universität Ilmenau, Final report AiF 15747 BR, (2007).

Google Scholar

[7] Y. Murakami, High and Ultrahigh Cycle Fatigue, Comprehensive Structural Integrity. Vol. 4, Elsevier Science Pub. Co. (2003).

Google Scholar

[8] E. Rossow, Eine einfache Rechenschiebernäherung an die den normal scores entsprechenden Prozentpunkte. Qualitätskontrolle 9 (1964) Nr. 12, S. 146/47.

Google Scholar

[9] C.M. Sonsino, Course of SN curves especially in the high-cycle fatigue regime with regard to component design and safety, International Journal of Fatigue 29, (2007).

DOI: 10.1016/j.ijfatigue.2006.11.015

Google Scholar

[10] E. Haibach, Betriebsfestigkeit – Verfahren und Daten zur Bauteilberechnung, 3. Auflage, Springer-Verlag, ISBN-103-540-29363-9, (2006).

Google Scholar

[11] D. Radaj, M. Vormwald, Ermüdungsfestigkeit – Grundlagen für Ingenieure, 3. Auflage, Springer-Verlag, ISBN-978-3-540-71458-3, (2007).

Google Scholar