[1]
S. Ângulo and A. Figueiredo, Concreto: Ciência e Tecnologia, 1st ed., vol. 2, 2 vols. São Paulo: G.C. Isaia, (2011).
Google Scholar
[2]
Y. Kasai, Development and Subjects of Recycled Aggregate Concrete in Japan, Key Eng. Mater., vol. 302–303, p.288–300, (2006).
DOI: 10.4028/www.scientific.net/kem.302-303.288
Google Scholar
[3]
T. Yonezawa, Y. Kamiyama, K. Yanagibashi, M. Kojima, K. Arakawa, and M. Yamada, A Study on a Technology for Producing High Quality Recycled Coarse Aggregate, J. Soc. Mater. Sci. Jpn., vol. 50, no. 8, p.835–842, (2001).
DOI: 10.2472/jsms.50.835
Google Scholar
[4]
M. Quattrone, S. C. Angulo, and V. M. John, Energy and CO2 from high performance recycled aggregate production, Resour. Conserv. Recycl., (2014).
Google Scholar
[5]
M. Tsujino, T. Noguchi, R. Kitagaki, and H. Nagai, Completely Recyclable Concrete of Aggregate-Recovery Type by Using Microwave Heating, J. Struct. Constr. Eng. Trans. AIJ, vol. 76, no. 660, p.223–229, (2011).
DOI: 10.3130/aijs.76.223
Google Scholar
[6]
Y. -G. Zhu, S. -C. Kou, C. -S. Poon, J. -G. Dai, and Q. -Y. Li, Influence of silane-based water repellent on the durability properties of recycled aggregate concrete, Cem. Concr. Compos., vol. 35, no. 1, p.32–38, Jan. (2013).
DOI: 10.1016/j.cemconcomp.2012.08.008
Google Scholar
[7]
B. Arkles, Tailoring Surfaces with Silanes, CHEMTECH, p.766–778, Dec. (1977).
Google Scholar
[8]
B. Arkles, Hydrophobicity, Hydrophilicity and Silanes, Paint Coat. Ind., vol. 22, p.114–124, Oct. (2006).
Google Scholar
[9]
E. P. Plueddemann, Silane Coupling Agents, 2nd edition. New York: Springer, (1991).
Google Scholar
[10]
N. S. Klein, J. Bachmann, A. Aguado, and B. Toralles-Carbonari, Evaluation of the wettability of mortar component granular materials through contact angle measurements, p.1611 – 1620, (2012).
DOI: 10.1016/j.cemconres.2012.09.001
Google Scholar
[11]
F. L. Maranhão, Método para redução de mancha nas vedações externas de edifícios., Escola Politecnica Universidade de São Paulo, São Paulo, (2009).
DOI: 10.11606/t.3.2009.tde-12082010-170254
Google Scholar
[12]
M. Medeiros and P. Helene, Efficacy of surface hydrophobic agents in reducing water and chloride ion penetration in concrete, Mater. Struct., vol. 41, no. 1, p.59–71, Jan. (2008).
DOI: 10.1617/s11527-006-9218-5
Google Scholar
[13]
Y. G. Zhu, P. Z. Xu, Q. Y. Li, and C. Li, Influence of Water Repellent Surface Impregnation on Water Absorption Properties of Recycled Aggregate Concrete, Appl. Mech. Mater., vol. 71–78, p.5011–5014, Jul. (2011).
DOI: 10.4028/www.scientific.net/amm.71-78.5011
Google Scholar
[14]
L. Petersen, P. Minkkinen, and K. H. Esbensen, Representative sampling for reliable data analysis: Theory of Sampling, Chemom. Intell. Lab. Syst., vol. 77, no. 1–2, p.261–277, May (2005).
DOI: 10.1016/j.chemolab.2004.09.013
Google Scholar
[15]
W. Witt, U. Köhler, and J. List, Direct Imaging of Very Fast Particles Opens the Application of the Powerful (Dry) Dispersion for Size and Shape Characterization, Proc. PARTEC 2004, (2004).
Google Scholar
[16]
W. Witt, U. Köhler, and J. List, CURRENT LIMITS OF PARTICLE SIZE AND SHAPE ANALYSIS WITH HIGH SPEED IMAGE ANALYSIS, Proc. PARTEC 2007, (2007).
Google Scholar
[17]
T. Allen, Powder Sampling and Particle Size Determination. Elsevier, (2003).
Google Scholar
[18]
S. J. Blott and K. Pye, Particle shape: a review and new methods of characterization and classification, Sedimentology, vol. 55, no. 1, p.31–63, Feb. (2008).
Google Scholar
[19]
ABNT/CB-018, ABNT NBR NM 53: 2009 Coarse aggregate - Determination of the bulk specific gravity, apparent specific gravity and water absorption., ABNT - Associação Brasileira de Normas Técnicas, 30-Nov-(2009).
Google Scholar
[20]
D. Quéré, Wetting and Roughness, Annu. Rev. Mater. Res., vol. 38, no. 1, p.71–99, (2008).
Google Scholar