Static Compaction of Soils with Varying Clay Content

Article Preview

Abstract:

The use of compressed earth blocks (CEBs) is widespread in the field of earth construction. They present better mechanical performance than adobe and the equipment for their production is simple. Laboratory testing of compressed earth blocks requires large amounts of material. There are variations of unconfined strength testing procedures such as testing halves of the blocks with layers of mortar between them or testing whole blocks in diverse directions. This complicates the interpretation of test results as the shape factor and mortar characteristics influence the results significantly. Static compaction test can be used to produce cylindrical samples representative of CEBs. The water content of soil used for the production of CEBs is often determined in standard Proctor test while experimental data indicate that the optimum moisture content for static and dynamic compaction is different. The present article addresses the behavior of four soil mixes with varying clay content compacted statically with a constant rate of strain. Static compaction curves were compared with those obtained in standard Proctor test. For all the soil mixes the static optimum moisture content was found to correspond to the start of consolidation. The compaction curve presented no wet side of optimum in contrast to Proctor test. The energy needed to achieve a desired density by static compaction was analyzed for soils with varying clay contents. Static compaction was found to be more efficient than dynamic for clayey soils. An increase in water content was observed to help achieving higher densities at low pressures, which can improve the performance of manual CEB presses.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

238-246

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. K. Mitchell and K. Soga, Fundamentals of Soil Behavior. New York: Wiley, (2005).

Google Scholar

[2] V. Maniatidis and P. Walker, A Review of Rammed Earth Construction, (2003).

Google Scholar

[3] H. Houben, V. Rigassi, and P. Garnier, Compressed earth blocks production equipment, Second Edi. Brussels: CRATerre-EAG, (1996).

Google Scholar

[4] K. H. Head, Manual of Soil Laboratory Testing Volume 1: Soil Classification and Compaction Tests, Third Edit. Dunbeath: Whittles Publishing, (2006).

DOI: 10.1144/qjegh2011-059

Google Scholar

[5] T. W. Lambe and R. V. Whitman, Soil Mechanics. New York: John Wiley & Sons, Ltd, (1969).

Google Scholar

[6] R. L. Sloane and T. R. Kell, The fabric of mechanically compacted kaolin, in Fourteenth National Conference on Clays and Clay Minerals, 1966, no. (1932).

DOI: 10.1016/b978-0-08-011908-3.50027-x

Google Scholar

[7] O. M. D. E. Oliveira, Estudo sobre a resistência ao cisalhamento de um solo residual compactado não saturado, Universidade de São Paulo, (2004).

DOI: 10.11606/t.3.2004.tde-08032005-160218

Google Scholar

[8] C. T. S. Beckett and C. Aguarde, The Effect of Relative Humidity and Temperature on the Unconfined Compressive Strength of Rammed Earth, " in Unsaturated Soils: Research and Applications, C. Mancuso, C. Jommi, and F. D, Onza, Eds. Berlin: Springer Berlin Heidelberg, 2012, p.287.

DOI: 10.1007/978-3-642-31116-1_39

Google Scholar

[9] D. Ciancio, P. Jaquin, and P. Walker, Advances on the assessment of soil suitability for rammed earth, Constr. Build. Mater., vol. 42, p.40–47, May (2013).

DOI: 10.1016/j.conbuildmat.2012.12.049

Google Scholar

[10] M. Hall and Y. Djerbib, Rammed earth sample production: context, recommendations and consistency, Constr. Build. Mater., vol. 18, no. 4, p.281–286, May (2004).

DOI: 10.1016/j.conbuildmat.2003.11.001

Google Scholar

[11] V. Maniatidis and P. Walker, Structural Capacity of Rammed Earth in Compression, no. March, p.230–239, (2008).

Google Scholar

[12] P. J. Walker, Strength and erosion characteristics of earth blocks and earth block masonry, J. Mater. Civ. Eng., no. October, p.497–506, (2004).

DOI: 10.1061/(asce)0899-1561(2004)16:5(497)

Google Scholar

[13] M. Olivier and A. Mesbah, Le matériau terre - Essai de compactage statique pour la fabrication de briques de terre compressées, Bull. des Lab. des Ponts Chaussées, vol. 146, p.37–43, (1986).

DOI: 10.1016/s0152-9668(02)80033-x

Google Scholar

[14] W. J. Turnbull, Compaction and strength tests on soils, Vicksburg, Mississippi, (1950).

Google Scholar

[15] C. H. Kouakou and J. C. Morel, Strength and elasto-plastic properties of non-industrial building materials manufactured with clay as a natural binder, Appl. Clay Sci., vol. 44, no. 1–2, p.27–34, Apr. (2009).

DOI: 10.1016/j.clay.2008.12.019

Google Scholar

[16] W. D. Lawson, C. Kancharla, and P. W. Jayawickrama, Engineering Properties of Unstabilized Compressed Earth Blocks, in Geo-Frontiers 2011: Advances in Geotechnical Engineering, 2011, p.2679–2688.

DOI: 10.1061/41165(397)274

Google Scholar

[17] B. V. V. Reddy and K. S. Jagadish, The static compaction of soils, Géotechnique, vol. 43, no. 2, p.337–341, (1993).

DOI: 10.1680/geot.1993.43.2.337

Google Scholar

[18] A. R. A. G. Pinto, Fibras de curauá e sisal como reforço em matrizes de solo, Pontifícia Universidade Católica do Rio de Janeiro, (2008).

DOI: 10.17771/pucrio.acad.12096

Google Scholar

[19] M. Olivier, Discussion: The static compaction of soils., Géotechnique, vol. 45, no. 0, p.363–367, (1995).

Google Scholar

[20] A. Mesbah, J. C. Morel, and M. Olivier, Comportement des sols fins argileux pendant un essai de compactage statique : détermination des paramètres pertinents, p.1–27.

DOI: 10.1007/bf02481707

Google Scholar

[21] A. Tarantino and E. De Col, Compaction behaviour of clay, Géotechnique, vol. 58, no. 3, p.199–213, Jan. (2008).

DOI: 10.1680/geot.2008.58.3.199

Google Scholar

[22] A. Mesbah, J. C. Morel, and M. Olivier, Comportement des sols fins argileux pendant un essai de compactage statique : détermination des paramètres pertinents, Mater. Struct., vol. 32, p.687–694, (1999).

DOI: 10.1007/bf02481707

Google Scholar

[23] M. C. Jiménez Delgado and I. C. Guerrero, The selection of soils for unstabilised earth building: A normative review, Constr. Build. Mater., vol. 21, no. 2, p.237–251, Feb. (2007).

DOI: 10.1016/j.conbuildmat.2005.08.006

Google Scholar

[24] C. T. S. Beckett and C. E. Augarde, Development of microstructure in compacted earthen building materials, in Unsaturated Soils, 2011, p.139–144.

DOI: 10.1201/b10526-11

Google Scholar

[25] H. Houben and H. Guillaud, Earth construction. London: Intermediate Technology Publications, (1994).

Google Scholar

[26] ABNT, NBR 7181 - Solo - análise granulométrica., (1984).

Google Scholar

[27] ABNT, NBR 6508 - Solo - determinação da massa específica dos grãos., (1984).

Google Scholar

[28] ABNT, NBR 6459 - Solo - determinação do limite de liquidez., (1984).

Google Scholar

[29] ABNT, NBR 7180 - Solo - determinação do limite de plasticidade., (1984).

Google Scholar

[30] ABNT, NBR 7182 - Solo - ensaio de compactação., (1986).

Google Scholar