Modular Footbridges of Guadua Angustifolia Kunth

Article Preview

Abstract:

In South America, especially in the Andean region, many communities are isolated and their development is limited due to the difficulties in communicating with urban areas, because the lack of adequate road infrastructure. Most of this problem is due to economic issues and lack of attention from governments. Moreover, the Guadua angustifolia Kunth (Guadua-a.) is a bamboo that grows in most of the Americas. This material has a resistance – weight ratio similar to structural steel also presenting additional benefits such as soil stabilization, flow regulation, and a high CO2 fixation rate to the ground. In addition the Guadua-a. growth cycle spans from 3 to 5 years. All of these makes the Guadua-a. in highly renewable material. This paper presents an alternative for the construction of Guadua-a. structural modules for pedestrian bridges, as a solution to the lack of infrastructure in village roads and even in suburban areas. In the proposed model, the bridge would be built by the community in a short time, taking advantage of existing Guadua-a. in the area, and establishing an industrialized cultivation of it, to enable them to have enough material for maintenance and replacement of sections as necessary. A numerical structural analysis was performed to determine the maximum possible span under load specifications from Colombian bridge building code. The results shows that a bridge up to 21m of span can be constructed using the module. The span can be increased drastically when the module is combined with wire-cable or an arc shaped configuration, however, the module was assessed to be used in straight truss bridges because this setting carries the largest loads on the elements. Real scale load tests were conducted on a full scale physical model of the module, the structural elements and the connection between the modules.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

218-226

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Information on: http: /estadisticas. cepal. org/cepalstat/WEB_CEPALSTAT/Portada. asp.

Google Scholar

[2] Information on: http: /estadisticas. cepal. org.

Google Scholar

[3] CEPAL, Panorama Social de América Latina, Comisión económica para América Latina y El Caribe, Santiago de Chile, (2012).

DOI: 10.18235/0001028

Google Scholar

[4] Rozas, P. y Sánchez, R. (). Desarrollo de infraestructura y crecimiento económico: revisión conceptual. División de recursos naturales e infraestructura, Comisión económica para América Latina y El Caribe, Santiago de Chile, (2004).

DOI: 10.18356/3e0292a5-es

Google Scholar

[5] Information on: http: /www. puentesdelaesperanza. org.

Google Scholar

[6] Information on: http: /bridgestoprosperity. org.

Google Scholar

[7] Ministerio de Agricultura y Desarrollo Rural, La cadena de la guadua en Colombia, Minagro, Bogotá D.C., (2005).

DOI: 10.21930/agrosavia.video.2013.61

Google Scholar

[8] Villegas, M., Guadua, arquitectura y diseño, 1st. ed., Villegas editores, Bogotá D.C., (2003).

Google Scholar

[9] Torres, C. A, La ciudad informal colombiana. Revista Bitácora Urbano Territorial, 1 (2007) 53-93.

Google Scholar

[10] Ministerio de transporte, Código Colombiano de Diseño Sísmico de Puentes – CCDSP.

Google Scholar

[11] Ministerio de Vivienda y Medio Ambiente, Reglamento Colombiano de Construcción Sismo Resistente – NSR10. Asociación Colombiana de Ingeniería Sísmica, Bogotá D.C., (2010).

Google Scholar

[12] Quiroga, H., Calificación estructural de un módulo de puente para uso provisional en pasos peatonales construido con Guadua Angustifolia Kunth, Universidad de La Salle, Bogotá D.C., (2014).

DOI: 10.24133/ciencia.v22i1.1288

Google Scholar

[13] Instituto Colombiano de Normas Técnicas, Norma Técnica Colombiana 5525. Métodos de ensayo para determinar las propiedades físicas y mecánicas de la Guadua Angustifolia Kunth, ICONTEC, Bogotá D.C., (2006).

DOI: 10.2307/j.ctvt6rn5t.6

Google Scholar

[14] Pacheco, C. Resistencia a la Tracción Perpendicular a la Fibra de la Guadua Angustifolia, Universidad Nacional de Colombia, Bogotá D.C., (2006).

Google Scholar

[15] Torres, L., Modelo anisótropo de elementos finitos para el análisis mecánico del bambú y su verificación experimental, Universidad del Valle, Cali, (2005).

Google Scholar

[16] Lamus, F, Plazas, M & Luna, P., Double shear parallel to the grain, 15th International Conference on Non-conventional Materials and Technologies (15NOCMAT2014), Pirassununga, (2014).

Google Scholar

[17] Allegheny Ludlum, Technical data – blue sheet, stainless steel type 301, Pittsburgh, (1998).

Google Scholar

[18] Cely, J. & Cruz, M., Determinación de la resistencia de los elementos que conforman la sección de un puente peatonal modular construido con Guadua Angustifolia Kunth, Universidad de La Salle, Bogotá D.C., (2013).

DOI: 10.2307/j.ctvt6rn5t.4

Google Scholar