Thermal Insulation Particleboards Made with Wastes from Wood and Tire Rubber

Article Preview

Abstract:

The concept of sustainable buildings addresses the environmentally efficiency, with respect to energy consumption, by adopting products that offer thermal insulation. Moreover, use of wastes from different materials also contributes to obtain products for this application. The volume of wastes from timber industry and those from tires are an environmental problem. This study aimed to production and characterization of particleboards using wastes from wood and tire rubber with castor-oil polyurethane resin. Panels were produced containing only wood and also with addition of tire rubber. The properties determined were density, modulus of rupture (MOR) and modulus of elasticity (MOE) in bending, according to Brazilian Code NBR 14810-3 (2006), and thermal conductivity. Statistical analysis was conducted in physical and mechanical properties. Panels containing wood were classified as low density (0.55 g/cm³), while those with wood and tire rubber resulted in medium density (0.78 g/cm³). For mechanical properties, the addition of rubber resulted in increased of MOR and reduction for MOE. Superior performance for thermal conductivity was achieved for panels produced only with wood. However, samples with a mixture of wood and tire rubber also showed consistent thermal conductivity with similar products. Considering the results obtained, panels containing wood and tire rubber addition have potential for application as thermal insulation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

263-269

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Gellert, Inorganic mineral materials for insulation in buildings, in: M. R. Hall. Materials for energy efficiency and thermal comfort in buildings. Woodhead Publishing Limited, Cambridge, 2010. Chapter 8.

DOI: 10.1533/9781845699277.2.193

Google Scholar

[2] T. Luamkanchanaphan, S. Chotikaprakhan, and S. Jarusombati, A Study of Physical, Mechanical and Thermal Properties for Thermal Insulation from Narrow-leaved Cattail Fibers. APCBEE Procedia, 1 (2012) 46 – 52.

DOI: 10.1016/j.apcbee.2012.03.009

Google Scholar

[3] IBAMA Brazilian Institute of the Environment and Renewable Natural Resources. 2007). Information on http: /www. ibama. gov. br/qualidadeambiental/madeira/produtos_reg_ibama. pdf.

Google Scholar

[4] I. R. F. Martins, Concreto de Alto Desempenho com Adição de Resíduos de Borracha de Pneu. [dissertation]. Ilha Solteira (SP): São Paulo State University Júlio de Mesquita Filho, (2005).

DOI: 10.21475/ajcs.2016.10.11.pne183

Google Scholar

[5] C. F. Fioriti, J. L. Akasaki, Fabricação de blocos de concreto com resíduos de borracha de pneus. (2004).

DOI: 10.14295/holos.v4i2.349

Google Scholar

[6] J. Fiorelli, D. D. Curtolo, N. G. Barrero, H. Savastano Jr., E. M. J. A. Pallone and R. Johnson, Particulate composite based on coconut fiber and castor oil polyurethane adhesive: An eco-efficient product. Ind. Crop. Prod. 40 (2012) 69– 75.

DOI: 10.1016/j.indcrop.2012.02.033

Google Scholar

[7] ABIPA Brazilian Association of the Wood Panels Industry. 2014. Information on http: /www. abipa. org. br/numeros_I. php.

Google Scholar

[8] W. C. Lewis, Thermal conductivity of wood-base fiber and particle panel materials. Research Paper FPL 77. (1967).

Google Scholar

[9] F. M. Dias, Aplicação de resina poliuretana à base de mamona na fabricação de painéis de madeira aglomerada, in: F. A. Rocco Lahr, Produtos derivados da madeira: síntese dos trabalhos desenvolvidos no Laboratório de Madeiras e de Estruturas de Madeira, SET-EESC-USP. Escola de Engenharia de São Carlos - Universidade de São Paulo, São Carlos, 2008, pp.73-92.

DOI: 10.21041/conpat2019/v2pat21

Google Scholar

[10] C. I. Campos, Produção e caracterização físico-mecânica de MDF a partir de fibras de madeira de reflorestamento e adesivos alternativos em diferentes teores. [Ph.D. thesis]. São Carlos (SP): University of São Paulo, (2005).

Google Scholar

[11] M. S. Bertolini, M. F. Nascimento, F. A. Rocco Lahr and J. A. M. Agnelli, Accelerated artificial aging of particleboards from residues of CCB treated Pinus sp. and castor oil resin. Mater Res (São Carlos. Impresso). 16, n. 2 (2013) 293-303.

DOI: 10.1590/s1516-14392013005000003

Google Scholar

[12] L. D. Varanda, M. F. Nascimento, A. L. Christoforo, D.A.L. Silva and F.A. Rocco Lahr, Oat hulls as addition to high density panels production. Mater. Res. 16, n. 6 (2013) 1355-1361.

DOI: 10.1590/s1516-14392013005000131

Google Scholar

[13] ABNT. Brazilian Technical Standards Association. NBR 14810-3: Chapas de Madeira Aglomerada. Part 3: Métodos de Ensaio. Rio de Janeiro. (2006).

Google Scholar

[14] W. N. Santos, Propriedades térmicas dos materiais poliméricos. Projeto de Pesquisa, Processo: 11/02943-4. Biblioteca Virtual FAPESP. (2011).

Google Scholar

[15] American National Standards Institute ANSI A208. 1: Particleboard. Gaithersburg. (1999).

Google Scholar

[16] X. M. Song, J. Y. Hwang, Mechanical properties of composites made with wood fiber and recycled tire rubber. Forest Prod. J. 51, n. 5 (2001) 45-51.

Google Scholar

[17] F. A. Rocco Lahr, R. Fernandes and M. S. Bertolini, Influência da preservação CCB na dureza da madeira de Pinus sp. In: Congresso Brasileiro de Ciência e Engenharia de Materiais, 19, 2010, Campos do Jordão. Anais.. Campos do Jordão: [s. n. ]. CD-ROM. (2010).

DOI: 10.55592/cfb.2022.8782827

Google Scholar

[18] N. Ayrilmis, U. Buyuksari and E. Avci, Utilization of waste tire rubber in manufacture of oriented strand board. Waste Manage. 29 (2009) 2553–2557.

DOI: 10.1016/j.wasman.2009.05.017

Google Scholar

[19] M. Ghofrani, A. Rabiei, Study of the physical and mechanical properties of composite boards made of a mixture of poplar chips and recycled tires. Environ. Sci. 6, n. 1 (2008) 123-129.

Google Scholar

[20] D.G. Macedo: Composites made with wood chips and tire rubber residues [Ph.D. thesis]. Brasília (DF): University of Brasília, (2008).

Google Scholar

[21] J. Khedari, N. Nankongnab, J. Hirunlabh and S Teekasap, New low-cost insulation particleboards from mixture of durian peel and coconut coir. Build. Environ. 39 (2004) 59 – 65.

DOI: 10.1016/j.buildenv.2003.08.001

Google Scholar

[22] P. Lertsutthiwong, S. Khunthon, K. Siralertmukul, K. Noomun and S. Chandrkrachang, New insulating particleboards prepared from mixture of solid wastes from tissue paper manufacturing and corn peel. Bioresource Technol. 99 (2008) 4841–4845.

DOI: 10.1016/j.biortech.2007.09.051

Google Scholar

[23] H. Benkreira, A. Khan and K. V. Horoshenkov, Sustainable acoustic and thermal insulation materials from elastomeric waste residues. Chem. Eng. Sci. 66 (2011) 4157–4171.

DOI: 10.1016/j.ces.2011.05.047

Google Scholar

[24] X. Zhou, F. Zheng, H. Li, C. Lu, An environment-friendly thermal insulation material from cotton stalk fibers. Energ. Buildings. 42 (2010) 1070–1074.

DOI: 10.1016/j.enbuild.2010.01.020

Google Scholar

[25] ABNT. Brazilian Technical Standards Association. NBR 15220: Desempenho Térmico de Edificações. Rio de Janeiro. (2003).

Google Scholar