[1]
S.M. Porter, Closing the phosphatization window: testing for the influence of taphonomic megabias on the pattern of small shelly fossil decline, Palaios 19 (2004) 178-183.
DOI: 10.1669/0883-1351(2004)019<0178:ctpwtf>2.0.co;2
Google Scholar
[2]
B. Runnegar, Shell microstructures of Cambrian molluscs replicated by phosphate, Alcheringa 9 (1985) 245-257.
DOI: 10.1080/03115518508618971
Google Scholar
[3]
B. Runnegar, Mollusca, in: S. Bengtson, S. Conway Morris, B.J. Cooper, P.A. Jell, B.N. Runnegar, Early Cambrian fossils from South Australia, Memoir 9 of the Association of Australasian Palaeontologists, Brisbane, 1990, pp.232-257.
Google Scholar
[4]
A.V. Kouchinsky, Shell microstructures of the Early Cambrian Anabarella and Watsonella as new evidence on the origin of the Rostroconchia, Lethaia 32 (1999) 173-180.
DOI: 10.1111/j.1502-3931.1999.tb00537.x
Google Scholar
[5]
A.V. Kouchinsky, Shell microstructures in Early Cambrian molluscs, Acta Palaeontol. Pol. 45 (2000) 119-150.
Google Scholar
[6]
M.J. Vendrasco, S.M. Porter, A. Kouchinsky, G. Li, C.Z. Fernandez, New data on molluscs and their shell microstructures from the Middle Cambrian Gowers Formation, Australia, Palaeontology 53 (2010) 97-135.
DOI: 10.1111/j.1475-4983.2009.00922.x
Google Scholar
[7]
B. Runnegar, J. Pojeta, Jr., The earliest bivalves and their Ordovician descendants, Am. Malacol. Bull. 9 (1992) 117-122.
Google Scholar
[8]
M.J. Vendrasco, A.G. Checa, A.V. Kouchinsky, Shell microstructure of the early bivalve Pojetaia and the independent origin of nacre within the Mollusca, Palaeontology 54 (2011) 825-850.
DOI: 10.1111/j.1475-4983.2011.01056.x
Google Scholar
[9]
M.J. Vendrasco, A.V. Kouchinsky, S.M. Porter, C.Z. Fernandez, Phylogeny and escalation in Mellopegma and other Cambrian molluscs, Palaeontol. Electron. 14 (2011) 11A, 44 p.
Google Scholar
[10]
S.M. Porter, Skeletal microstructure indicates chancelloriids and halkieriids are closely related, Palaeontology 51 (2008) 865-879.
DOI: 10.1111/j.1475-4983.2008.00792.x
Google Scholar
[11]
M.J. Vendrasco, G. Li, S.M. Porter, C.Z. Fernandez, New data on the enigmatic Ocruranus-Eohalobia group of early Cambrian small skeletal fossils, Palaeontology 52 (2009) 1373-1396.
DOI: 10.1111/j.1475-4983.2009.00913.x
Google Scholar
[12]
J.D. Taylor, M. Layman, The mechanical properties of bivalve (Mollusca) shell structures, Palaeontology 15 (1972) 73-87.
Google Scholar
[13]
J.D. Currey, Shell form and strength, in: E.R. Trueman, M.R. Clarke (Eds. ), The Mollusca: Form and Function, Volume 11, Academic Press, Inc., San Diego, 1988, pp.183-210.
DOI: 10.1016/b978-0-12-751411-6.50015-1
Google Scholar
[14]
A.R. Palmer, Calcification in marine molluscs: How costly is it?, Proc. Natl. Acad. Sci. USA 89 (1992) 1379-1382.
DOI: 10.1073/pnas.89.4.1379
Google Scholar
[15]
M.J. Vendrasco, A. Checa, W.P. Heimbrock, S.D.J. Baumann, Nacre in molluscs from the Ordovician of the midwestern United States, Geosciences 3 (2013) 1-29.
DOI: 10.3390/geosciences3010001
Google Scholar
[16]
A.C. Maloof, S.M. Porter, J.L. Moore, F.Ö. Dudás, S.A. Bowring, J.A. Higgins, D.A. Fike, M.P. Eddy, The earliest Cambrian record of animals and ocean geochemical change, GSA Bull. 122 (2010) 1731-1774.
DOI: 10.1130/b30346.1
Google Scholar
[17]
A. Kouchinsky, S. Bengtson, B. Runnegar, C. Skovsted, M. Steiner, M. Vendrasco, Chronology of early Cambrian biomineralization, Geol. Mag. 149 (02) (2012) 221-251.
DOI: 10.1017/s0016756811000720
Google Scholar
[18]
H.A. Lowenstam, Lepidocrocite, an apatite mineral, and magnetite in teeth of chitons (Polyplacophora), Science 156 (1967) 1373-1375.
DOI: 10.1126/science.156.3780.1373
Google Scholar
[19]
H.A. Lowenstam, Opal precipitation by marine gastropods (Mollusca), Science 171 (1971) 487-490.
DOI: 10.1126/science.171.3970.487
Google Scholar
[20]
H.A. Lowenstam, Weddelite in a marine gastropod and in Antarctic sediments, Science 162 (1968) 1129-1130.
DOI: 10.1126/science.162.3858.1129
Google Scholar
[21]
A. Warén, S. Bengtson, S.K. Goffredi, C.L. Van Dover, A hot-vent gastropod with iron sulfide dermal sclerites, Science 302 (2003) 1007.
DOI: 10.1126/science.1087696
Google Scholar
[22]
J.H.E. Cartwright, A.G. Checa, J.D. Gale, D. Gebauer, C.I. Sainz-Díaz, Calcium carbonate polyamorphism and its role in biomineralization: how many amorphous calcium carbonates are there?, Angew. Chem. Int. Ed. Engl. 51 (48) (2012) 11960-11970.
DOI: 10.1002/anie.201203125
Google Scholar
[23]
A.L. Soldati, D.E. Jacob, U. Wehrmeister, W. Hofmeister, Structural characterization and chemical composition of aragonite and vaterite in freshwater cultured pearls, Mineral. Mag. 72 (2008) 579-592.
DOI: 10.1180/minmag.2008.072.2.579
Google Scholar
[24]
N. Spann, E.M. Harper, D.C. Aldridge, The unusual mineral vaterite in shells of the freshwater bivalve Corbicular fluminea from the UK, Naturwissenschaften 97 (2010) 743-751.
DOI: 10.1007/s00114-010-0692-9
Google Scholar
[25]
M. Frenzel, E.M. Harper, Micro-structure and chemical composition of vateritic deformities occurring in the bivalve Corbicula fluminea (Müller, 1774), J. Struct. Biol. 174 (2011) 321-332.
DOI: 10.1016/j.jsb.2011.02.002
Google Scholar
[26]
G. Nehrke, H. Poigner, D. Wilhelms-Dick, T. Brey, D. Abele, Coexistence of three calcium carbonate polymorphs in the shell of the Antarctic clam Laternula elliptica, Geochem. Geophys. Geosyst. 13 (2012) 1-8.
DOI: 10.1029/2011gc003996
Google Scholar
[27]
L. Devaere, S. Clausen, M. Steiner, J.J. Álvaro, D. Vachard, Chronostratigraphic and palaeogeographic significance of an early Cambrian microfauna from the Heraultia Limestone, northern Montagne Noire, France, Palaeontol. Electron. 16 (2013).
DOI: 10.26879/366
Google Scholar
[28]
L. Devaere, S. Clausen, E. Monceret, N. Tormo, H. Cohen, D. Vachard, Lapworthellids and other skeletonised microfossils from the Cambrian Stage 3 of the northern Montagne Noire, southern France, Ann. Paléontol. 100 (2014) 175-191.
DOI: 10.1016/j.annpal.2014.01.001
Google Scholar
[29]
J.G. Carter, G.R. Clark, II, Classification and phylogenetic significance of molluscan shell microstructure, in: T.W. Broadhead (Ed. ), Mollusks, notes for a short course, University of Tennessee Department of Geological Sciences Studies in Geology 13, University of Tennessee, Knoxville, Tennessee, 1985, pp.50-71.
DOI: 10.1017/s0271164800001093
Google Scholar
[30]
J.G. Carter (Ed. ), Skeletal Biomineralization: Patterns, Processes, and Evolutionary Trends, Van Nostrand, New York, (1990).
Google Scholar
[31]
J.G. Carter, P.J. Harries, N. Malchus, A.F. Sartori, L.C. Anderson, R. Bieler, A.E. Bogan, E.V. Coan, J.C.W. Cope, S.M. Cragg, J.R. García-March, J. Hylleberg, P. Kelley, K. Kleemann, J. Kříž, C. McRoberts, P.M. Mikkelsen, J. Pojeta, Jr., I. Tëmkin, T. Yancey, A. Zieritz, Illustrated Glossary of the Bivalvia, Treatise Online (Part N, Revised, Volume 1, Chapter 31) 48 (2012).
DOI: 10.17161/to.v0i0.4322
Google Scholar
[32]
O.B. Bøggild, The Shell Structure of the Mollusks, D. Kgl. Danske Vidensk. Selsk. Skrifter, Naturvidensk. Of Mathem. Afd. 9 (1930) 233-326.
Google Scholar
[33]
C. MacClintock, Shell structure of patelloid and bellerophontoid gastropods (Mollusca), Bull. Peabody Mus. Nat. Hist. 22 (1967) 1-140.
Google Scholar
[34]
J.D. Taylor, W.J. Kennedy, A. Hall, The shell structure and mineralogy of the Bivalvia: introduction. Nuculacea-Trigonacea, Bull. Brit. Mus. Nat. Hist. (Zoology) Supplement 3 (1969) 1-125.
DOI: 10.5962/p.312694
Google Scholar
[35]
J.D. Taylor, W.J. Kennedy, A. Hall, The shell structure and mineralogy of the Bivalvia: Lucinacea-Clavagellacea Conclusions, Bull. Brit. Mus. Nat. Hist. (Zoology) 22 (1973) 255-294.
DOI: 10.5962/p.314199
Google Scholar
[36]
I. Sunagawa, Crystals: Growth, Morphology and Perfection, Cambridge University Press, Cambridge, (2005).
Google Scholar
[37]
W.S. Rasband, ImageJ, U.S. National Institutes of Health, Bethesda, Maryland, USA, http: /imagej. nih. gov/ij/, 1997-(2015).
Google Scholar
[38]
B. Pokroy, A.N. Fitch, E. Zolotoyabko, Structure of biogenic aragonite (CaCO3), Cryst. Growth Des. 7 (2007) 1580-1583.
DOI: 10.1021/cg060842v
Google Scholar
[39]
B. Pokroy, A.N. Fitch, E. Zolotoyabko, On the structure of biogenic aragonite and calcite, in: J.L. Arias, M.S. Fernández (Eds. ), Biomineralization: from Paleontology to Materials Science, Proceedings of the 9th International Symposium on Biomineralization, Editorial Universitaria, Santiago, Chile, 2007, pp.305-312.
Google Scholar
[40]
I. Kobayashi, Internal shell microstructure of Recent bivalvian molluscs, Sci. Rep. Niigata Univ. Ser. E, Geol. Mineral. 2 (1971) 27-50.
Google Scholar
[41]
K. Wada, Nucleation and growth of aragonite crystals in the nacre of some bivalve molluscs, Biomineralisation 4 (1972) 141-159.
Google Scholar
[42]
M.J. Vendrasco, A.G. Checa, Shell microstructure and its inheritance in the calcitic helcionellid Mackinnonia, Est. J. Earth Sci. 64 (2015) 1-6.
DOI: 10.3176/earth.2015.18
Google Scholar
[43]
A. Checa, A. Sánchez-Navas, A. Rodríguez-Navarro, Crystal growth in the foliated aragonite of monoplacophorans (Mollusca), Cryst. Growth Des. 9 (2009) 4574-4580.
DOI: 10.1021/cg9005949
Google Scholar
[44]
J. England, M. Cusack, P. Dalbeck, A. Pérez-Huerta, Comparison of the crystallographic structure of semi nacre and nacre by backscatter diffraction, Cryst. Growth Des. 7 (2007) 307-310.
DOI: 10.1021/cg060374p
Google Scholar
[45]
A.B. Rodriguez-Navarro, A. Checa, M. -G. Willinger, R. Bolmaro, J. Bonarski, Crystallographic relationships in the crossed lamellar microstructure of the shell of the gastropod Conus marmoreus, Acta Biomater. 8 (2012) 830-835.
DOI: 10.1016/j.actbio.2011.11.001
Google Scholar
[46]
A.G. Checa, F.J. Esteban-Delgado, A.B. Rodríguez-Navarro, Crystallographic structure of the foliated calcite of bivalves, J. Struct. Biol. 157 (2007) 393-402.
DOI: 10.1016/j.jsb.2006.09.005
Google Scholar
[47]
B. Runnegar, Crystallography of the foliated calcite shell layers of bivalve molluscs, Alcheringa 8 (1984) 273-290.
DOI: 10.1080/03115518408618949
Google Scholar
[48]
A.G. Checa, H. Mutvei, A. J. Osuna-Mascaró, J.T. Bonarski, M. Faryna, K. Berent, C.M. Pina, M. Rousseau, E. Macías-Sánchez, Crystallographic control on the substructure of nacre tablets, J. Struct. Biol. 183 (2013) 368-376.
DOI: 10.1016/j.jsb.2013.07.014
Google Scholar
[49]
A.G. Checa, J.T. Bonarski, M.G. Willinger, M. Faryna, K. Berent, B. Kania, A. González-Segura, C.M. Pina, J. Pospiech, A. Morawiec, Crystallographic orientation inhomogeneity and crystal splitting in biogenic calcite, J. Roy. Soc. Interface 10 (2013).
DOI: 10.1098/rsif.2013.0425
Google Scholar
[50]
B. Bayerlein, P. Zaslansky, Y. Dauphin, A. Rack, P. Fratzl, I. Zlotnikov, Nat. Mater. 13 (2014) 1102-1107.
DOI: 10.1038/nmat4110
Google Scholar
[51]
J.J. Álvaro, S. Clausen, Morphology and ultrastructure of epilithic versus cryptic, microbial growth in lower Cambrian phosphorites from the Montagne Noire, France, Geobiology 8 (2010) 89-100.
DOI: 10.1111/j.1472-4669.2009.00229.x
Google Scholar
[52]
J.R. Creveling, A.H. Knoll, D.T. Johnston, Taphonomy of Cambrian phosphatic small shelly fossils, Palaios 29 (2014) 295-308.
DOI: 10.2110/palo.2014.002
Google Scholar
[53]
S. Golubic, R.D. Perkins, K.J. Lukas, Boring microorganisms and microborings in carbonate substrates, in: R.W. Frey (Ed. ), The Study of Trace Fossils: a Synthesis of Principles, Problems, and Procedures in Ichnology, Springer-Verlag, Berlin, 1975, pp.229-259.
DOI: 10.1007/978-3-642-65923-2_12
Google Scholar
[54]
H. Mutvei, Ultrastructural evolution of molluscan nacre, in: P. Westbroek, E.W. de Jong (Eds. ), Biomineralization and Biological Metal Accumulation, D. Reidel Publishing Company, Dordrecht, 1983, pp.267-271.
DOI: 10.1007/978-94-009-7944-4_24
Google Scholar
[55]
H. Mutvei, Flexible nacre in the nautiloid Isorthoceras, with remarks on the evolution of cephalopod nacre, Lethaia 16 (1983) 233-240.
DOI: 10.1111/j.1502-3931.1983.tb00660.x
Google Scholar
[56]
H. Mutvei, Connecting ring structure and its significance for classification of the orthoceratid cephalopods, Acta Palaeontol. Pol. 47 (2002) 157-168.
Google Scholar
[57]
W. Eysel, D.M. Roy, Topotactic reaction of aragonite to hydroxyapatite, Z. Kristallogr. 141 (1975) 11-24.
DOI: 10.1524/zkri.1975.141.1-2.11
Google Scholar
[58]
C.M. Zaremba, D.E. Morse, S. Mann, P.K. Hansma, G.D. Stucky, Aragonite-hydroxyapatite conversion in gastropod (abalone) nacre, Chem. Mater. 10 (1998) 3813-3824.
DOI: 10.1021/cm970785g
Google Scholar
[59]
P. Álvarez-Lloret, A.B. Rodríguez-Navarro, G. Falini, S. Fermani, M. Ortega-Huertas, Crystallographic control of the hydrothermal conversion of calcitic sea urchin spine (Paracentrotus lividus) into apatite, Cryst. Growth Des. 10 (2010).
DOI: 10.1021/cg101012a
Google Scholar
[60]
A. Kasioptas, T. Geisler, C.V. Putnis, C. Perdikouri, A. Putnis, Crystal growth of apatite by replacement of an aragonite precursor, J. Cryst. Growth 312 (2010) 2431-2440.
DOI: 10.1016/j.jcrysgro.2010.05.014
Google Scholar
[61]
A. Kasioptas, T. Geisler, C. Perdikouri, C. Trepmann, N. Gussone, A. Putnis, Polycrystalline apatite synthesized by hydrothermal replacement of calcium carbonates, Geochim. Cosmochim. Acta 75 (2011) 3486-3500.
DOI: 10.1016/j.gca.2011.03.027
Google Scholar
[62]
H.K. Erben, G. Flajs, A. Siehl, Über die schalenstruktur von monoplacophoren, Abhandlungen der Mathematisch-Naturwissenschaftlichen Klasse Jahrgang 1 (1968) 1-24.
Google Scholar
[63]
V.V. Drushchits, L.A. Doguzhayeva, V.G. Korinevskiy, Shell microstructure of the Ordovician monoplacophoran Romaniella Doguzhaeva, 1972, Doklady Earth Sci. Sect. 245 (1979) 232-234.
Google Scholar
[64]
R.L. Batten, The calcitic wall in the Paleozoic Families Eumphalidae and Platyceratidae (Archaeogastropoda), J. Paleontol. 58 (1984) 1186-1192.
Google Scholar
[65]
U. Balthasar, M. Cusack, L. Faryma, P. Chung, L.E. Holmer, J. Jin, I.G. Percival, L.E. Popov, Relic aragonite from Ordovician-Silurian brachiopods: implications for the evolution of calcification, Geology 39 (2011) 967-970.
DOI: 10.1130/g32269.1
Google Scholar
[66]
W. Feng, W. Sun, Phosphate replicated and replaced microstructure of molluscan shells from the earliest Cambrian of China, Acta Palaeontol. Pol. 48 (2003) 21-30.
Google Scholar
[67]
J.G. Carter, M.J.S. Tevesz, Shell microstructure of a middle Devonian (Hamilton Group) bivalve fauna from central New York, J. Paleontol. 52 (1978) 859-880.
Google Scholar
[68]
R.L. Squires, Burial environment, diagenesis, mineralogy, and Mg and Sr contents of skeletal carbonates in the Buckhorn Asphalt of Middle Pennsylvanian age, Arbuckle Mountains, Oklahoma, Ph.D. dissertation, California Institute of Technology, Pasadena, (1973).
Google Scholar
[69]
K. Bandel, A. Nützel, T.E. Yancey, Larval shells and shell microstructures of exceptionally well-preserved Late Carboniferous gastropods from the Buckhorn Asphalt deposit (Oklahoma, USA), Senck. Lethaea 82 (2002) 639-689.
DOI: 10.1007/bf03042954
Google Scholar