To Infer the early Evolution of Mollusc Shell Microstructures

Article Preview

Abstract:

To infer the early evolution of mollusc shell microstructures we must know the most ancient fossil record of molluscs. Fortunately the shells of many early molluscs are preserved via internal coatings and replacements by apatite that record sub-micrometer structural details that otherwise would be lost during diagenetic recrystallization. We herein discuss the methodology by which one can infer original shell microstructure from phosphatized fossils, pointing out the main problems and solutions in interpreting these traces of original shell crystal morphology. We also review the information these fossils have provided about the earliest evolution of the mollusc shell. Our long-term goal is to create a dataset of microstructures in early molluscs, which will be useful in understanding the incipient evolutionary arms race between molluscs and their predators, and will help elucidate how the mollusc biomineralization toolkit was built through time.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

113-133

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S.M. Porter, Closing the phosphatization window: testing for the influence of taphonomic megabias on the pattern of small shelly fossil decline, Palaios 19 (2004) 178-183.

DOI: 10.1669/0883-1351(2004)019<0178:ctpwtf>2.0.co;2

Google Scholar

[2] B. Runnegar, Shell microstructures of Cambrian molluscs replicated by phosphate, Alcheringa 9 (1985) 245-257.

DOI: 10.1080/03115518508618971

Google Scholar

[3] B. Runnegar, Mollusca, in: S. Bengtson, S. Conway Morris, B.J. Cooper, P.A. Jell, B.N. Runnegar, Early Cambrian fossils from South Australia, Memoir 9 of the Association of Australasian Palaeontologists, Brisbane, 1990, pp.232-257.

Google Scholar

[4] A.V. Kouchinsky, Shell microstructures of the Early Cambrian Anabarella and Watsonella as new evidence on the origin of the Rostroconchia, Lethaia 32 (1999) 173-180.

DOI: 10.1111/j.1502-3931.1999.tb00537.x

Google Scholar

[5] A.V. Kouchinsky, Shell microstructures in Early Cambrian molluscs, Acta Palaeontol. Pol. 45 (2000) 119-150.

Google Scholar

[6] M.J. Vendrasco, S.M. Porter, A. Kouchinsky, G. Li, C.Z. Fernandez, New data on molluscs and their shell microstructures from the Middle Cambrian Gowers Formation, Australia, Palaeontology 53 (2010) 97-135.

DOI: 10.1111/j.1475-4983.2009.00922.x

Google Scholar

[7] B. Runnegar, J. Pojeta, Jr., The earliest bivalves and their Ordovician descendants, Am. Malacol. Bull. 9 (1992) 117-122.

Google Scholar

[8] M.J. Vendrasco, A.G. Checa, A.V. Kouchinsky, Shell microstructure of the early bivalve Pojetaia and the independent origin of nacre within the Mollusca, Palaeontology 54 (2011) 825-850.

DOI: 10.1111/j.1475-4983.2011.01056.x

Google Scholar

[9] M.J. Vendrasco, A.V. Kouchinsky, S.M. Porter, C.Z. Fernandez, Phylogeny and escalation in Mellopegma and other Cambrian molluscs, Palaeontol. Electron. 14 (2011) 11A, 44 p.

Google Scholar

[10] S.M. Porter, Skeletal microstructure indicates chancelloriids and halkieriids are closely related, Palaeontology 51 (2008) 865-879.

DOI: 10.1111/j.1475-4983.2008.00792.x

Google Scholar

[11] M.J. Vendrasco, G. Li, S.M. Porter, C.Z. Fernandez, New data on the enigmatic Ocruranus-Eohalobia group of early Cambrian small skeletal fossils, Palaeontology 52 (2009) 1373-1396.

DOI: 10.1111/j.1475-4983.2009.00913.x

Google Scholar

[12] J.D. Taylor, M. Layman, The mechanical properties of bivalve (Mollusca) shell structures, Palaeontology 15 (1972) 73-87.

Google Scholar

[13] J.D. Currey, Shell form and strength, in: E.R. Trueman, M.R. Clarke (Eds. ), The Mollusca: Form and Function, Volume 11, Academic Press, Inc., San Diego, 1988, pp.183-210.

DOI: 10.1016/b978-0-12-751411-6.50015-1

Google Scholar

[14] A.R. Palmer, Calcification in marine molluscs: How costly is it?, Proc. Natl. Acad. Sci. USA 89 (1992) 1379-1382.

DOI: 10.1073/pnas.89.4.1379

Google Scholar

[15] M.J. Vendrasco, A. Checa, W.P. Heimbrock, S.D.J. Baumann, Nacre in molluscs from the Ordovician of the midwestern United States, Geosciences 3 (2013) 1-29.

DOI: 10.3390/geosciences3010001

Google Scholar

[16] A.C. Maloof, S.M. Porter, J.L. Moore, F.Ö. Dudás, S.A. Bowring, J.A. Higgins, D.A. Fike, M.P. Eddy, The earliest Cambrian record of animals and ocean geochemical change, GSA Bull. 122 (2010) 1731-1774.

DOI: 10.1130/b30346.1

Google Scholar

[17] A. Kouchinsky, S. Bengtson, B. Runnegar, C. Skovsted, M. Steiner, M. Vendrasco, Chronology of early Cambrian biomineralization, Geol. Mag. 149 (02) (2012) 221-251.

DOI: 10.1017/s0016756811000720

Google Scholar

[18] H.A. Lowenstam, Lepidocrocite, an apatite mineral, and magnetite in teeth of chitons (Polyplacophora), Science 156 (1967) 1373-1375.

DOI: 10.1126/science.156.3780.1373

Google Scholar

[19] H.A. Lowenstam, Opal precipitation by marine gastropods (Mollusca), Science 171 (1971) 487-490.

DOI: 10.1126/science.171.3970.487

Google Scholar

[20] H.A. Lowenstam, Weddelite in a marine gastropod and in Antarctic sediments, Science 162 (1968) 1129-1130.

DOI: 10.1126/science.162.3858.1129

Google Scholar

[21] A. Warén, S. Bengtson, S.K. Goffredi, C.L. Van Dover, A hot-vent gastropod with iron sulfide dermal sclerites, Science 302 (2003) 1007.

DOI: 10.1126/science.1087696

Google Scholar

[22] J.H.E. Cartwright, A.G. Checa, J.D. Gale, D. Gebauer, C.I. Sainz-Díaz, Calcium carbonate polyamorphism and its role in biomineralization: how many amorphous calcium carbonates are there?, Angew. Chem. Int. Ed. Engl. 51 (48) (2012) 11960-11970.

DOI: 10.1002/anie.201203125

Google Scholar

[23] A.L. Soldati, D.E. Jacob, U. Wehrmeister, W. Hofmeister, Structural characterization and chemical composition of aragonite and vaterite in freshwater cultured pearls, Mineral. Mag. 72 (2008) 579-592.

DOI: 10.1180/minmag.2008.072.2.579

Google Scholar

[24] N. Spann, E.M. Harper, D.C. Aldridge, The unusual mineral vaterite in shells of the freshwater bivalve Corbicular fluminea from the UK, Naturwissenschaften 97 (2010) 743-751.

DOI: 10.1007/s00114-010-0692-9

Google Scholar

[25] M. Frenzel, E.M. Harper, Micro-structure and chemical composition of vateritic deformities occurring in the bivalve Corbicula fluminea (Müller, 1774), J. Struct. Biol. 174 (2011) 321-332.

DOI: 10.1016/j.jsb.2011.02.002

Google Scholar

[26] G. Nehrke, H. Poigner, D. Wilhelms-Dick, T. Brey, D. Abele, Coexistence of three calcium carbonate polymorphs in the shell of the Antarctic clam Laternula elliptica, Geochem. Geophys. Geosyst. 13 (2012) 1-8.

DOI: 10.1029/2011gc003996

Google Scholar

[27] L. Devaere, S. Clausen, M. Steiner, J.J. Álvaro, D. Vachard, Chronostratigraphic and palaeogeographic significance of an early Cambrian microfauna from the Heraultia Limestone, northern Montagne Noire, France, Palaeontol. Electron. 16 (2013).

DOI: 10.26879/366

Google Scholar

[28] L. Devaere, S. Clausen, E. Monceret, N. Tormo, H. Cohen, D. Vachard, Lapworthellids and other skeletonised microfossils from the Cambrian Stage 3 of the northern Montagne Noire, southern France, Ann. Paléontol. 100 (2014) 175-191.

DOI: 10.1016/j.annpal.2014.01.001

Google Scholar

[29] J.G. Carter, G.R. Clark, II, Classification and phylogenetic significance of molluscan shell microstructure, in: T.W. Broadhead (Ed. ), Mollusks, notes for a short course, University of Tennessee Department of Geological Sciences Studies in Geology 13, University of Tennessee, Knoxville, Tennessee, 1985, pp.50-71.

DOI: 10.1017/s0271164800001093

Google Scholar

[30] J.G. Carter (Ed. ), Skeletal Biomineralization: Patterns, Processes, and Evolutionary Trends, Van Nostrand, New York, (1990).

Google Scholar

[31] J.G. Carter, P.J. Harries, N. Malchus, A.F. Sartori, L.C. Anderson, R. Bieler, A.E. Bogan, E.V. Coan, J.C.W. Cope, S.M. Cragg, J.R. García-March, J. Hylleberg, P. Kelley, K. Kleemann, J. Kříž, C. McRoberts, P.M. Mikkelsen, J. Pojeta, Jr., I. Tëmkin, T. Yancey, A. Zieritz, Illustrated Glossary of the Bivalvia, Treatise Online (Part N, Revised, Volume 1, Chapter 31) 48 (2012).

DOI: 10.17161/to.v0i0.4322

Google Scholar

[32] O.B. Bøggild, The Shell Structure of the Mollusks, D. Kgl. Danske Vidensk. Selsk. Skrifter, Naturvidensk. Of Mathem. Afd. 9 (1930) 233-326.

Google Scholar

[33] C. MacClintock, Shell structure of patelloid and bellerophontoid gastropods (Mollusca), Bull. Peabody Mus. Nat. Hist. 22 (1967) 1-140.

Google Scholar

[34] J.D. Taylor, W.J. Kennedy, A. Hall, The shell structure and mineralogy of the Bivalvia: introduction. Nuculacea-Trigonacea, Bull. Brit. Mus. Nat. Hist. (Zoology) Supplement 3 (1969) 1-125.

DOI: 10.5962/p.312694

Google Scholar

[35] J.D. Taylor, W.J. Kennedy, A. Hall, The shell structure and mineralogy of the Bivalvia: Lucinacea-Clavagellacea Conclusions, Bull. Brit. Mus. Nat. Hist. (Zoology) 22 (1973) 255-294.

DOI: 10.5962/p.314199

Google Scholar

[36] I. Sunagawa, Crystals: Growth, Morphology and Perfection, Cambridge University Press, Cambridge, (2005).

Google Scholar

[37] W.S. Rasband, ImageJ, U.S. National Institutes of Health, Bethesda, Maryland, USA, http: /imagej. nih. gov/ij/, 1997-(2015).

Google Scholar

[38] B. Pokroy, A.N. Fitch, E. Zolotoyabko, Structure of biogenic aragonite (CaCO3), Cryst. Growth Des. 7 (2007) 1580-1583.

DOI: 10.1021/cg060842v

Google Scholar

[39] B. Pokroy, A.N. Fitch, E. Zolotoyabko, On the structure of biogenic aragonite and calcite, in: J.L. Arias, M.S. Fernández (Eds. ), Biomineralization: from Paleontology to Materials Science, Proceedings of the 9th International Symposium on Biomineralization, Editorial Universitaria, Santiago, Chile, 2007, pp.305-312.

Google Scholar

[40] I. Kobayashi, Internal shell microstructure of Recent bivalvian molluscs, Sci. Rep. Niigata Univ. Ser. E, Geol. Mineral. 2 (1971) 27-50.

Google Scholar

[41] K. Wada, Nucleation and growth of aragonite crystals in the nacre of some bivalve molluscs, Biomineralisation 4 (1972) 141-159.

Google Scholar

[42] M.J. Vendrasco, A.G. Checa, Shell microstructure and its inheritance in the calcitic helcionellid Mackinnonia, Est. J. Earth Sci. 64 (2015) 1-6.

DOI: 10.3176/earth.2015.18

Google Scholar

[43] A. Checa, A. Sánchez-Navas, A. Rodríguez-Navarro, Crystal growth in the foliated aragonite of monoplacophorans (Mollusca), Cryst. Growth Des. 9 (2009) 4574-4580.

DOI: 10.1021/cg9005949

Google Scholar

[44] J. England, M. Cusack, P. Dalbeck, A. Pérez-Huerta, Comparison of the crystallographic structure of semi nacre and nacre by backscatter diffraction, Cryst. Growth Des. 7 (2007) 307-310.

DOI: 10.1021/cg060374p

Google Scholar

[45] A.B. Rodriguez-Navarro, A. Checa, M. -G. Willinger, R. Bolmaro, J. Bonarski, Crystallographic relationships in the crossed lamellar microstructure of the shell of the gastropod Conus marmoreus, Acta Biomater. 8 (2012) 830-835.

DOI: 10.1016/j.actbio.2011.11.001

Google Scholar

[46] A.G. Checa, F.J. Esteban-Delgado, A.B. Rodríguez-Navarro, Crystallographic structure of the foliated calcite of bivalves, J. Struct. Biol. 157 (2007) 393-402.

DOI: 10.1016/j.jsb.2006.09.005

Google Scholar

[47] B. Runnegar, Crystallography of the foliated calcite shell layers of bivalve molluscs, Alcheringa 8 (1984) 273-290.

DOI: 10.1080/03115518408618949

Google Scholar

[48] A.G. Checa, H. Mutvei, A. J. Osuna-Mascaró, J.T. Bonarski, M. Faryna, K. Berent, C.M. Pina, M. Rousseau, E. Macías-Sánchez, Crystallographic control on the substructure of nacre tablets, J. Struct. Biol. 183 (2013) 368-376.

DOI: 10.1016/j.jsb.2013.07.014

Google Scholar

[49] A.G. Checa, J.T. Bonarski, M.G. Willinger, M. Faryna, K. Berent, B. Kania, A. González-Segura, C.M. Pina, J. Pospiech, A. Morawiec, Crystallographic orientation inhomogeneity and crystal splitting in biogenic calcite, J. Roy. Soc. Interface 10 (2013).

DOI: 10.1098/rsif.2013.0425

Google Scholar

[50] B. Bayerlein, P. Zaslansky, Y. Dauphin, A. Rack, P. Fratzl, I. Zlotnikov, Nat. Mater. 13 (2014) 1102-1107.

DOI: 10.1038/nmat4110

Google Scholar

[51] J.J. Álvaro, S. Clausen, Morphology and ultrastructure of epilithic versus cryptic, microbial growth in lower Cambrian phosphorites from the Montagne Noire, France, Geobiology 8 (2010) 89-100.

DOI: 10.1111/j.1472-4669.2009.00229.x

Google Scholar

[52] J.R. Creveling, A.H. Knoll, D.T. Johnston, Taphonomy of Cambrian phosphatic small shelly fossils, Palaios 29 (2014) 295-308.

DOI: 10.2110/palo.2014.002

Google Scholar

[53] S. Golubic, R.D. Perkins, K.J. Lukas, Boring microorganisms and microborings in carbonate substrates, in: R.W. Frey (Ed. ), The Study of Trace Fossils: a Synthesis of Principles, Problems, and Procedures in Ichnology, Springer-Verlag, Berlin, 1975, pp.229-259.

DOI: 10.1007/978-3-642-65923-2_12

Google Scholar

[54] H. Mutvei, Ultrastructural evolution of molluscan nacre, in: P. Westbroek, E.W. de Jong (Eds. ), Biomineralization and Biological Metal Accumulation, D. Reidel Publishing Company, Dordrecht, 1983, pp.267-271.

DOI: 10.1007/978-94-009-7944-4_24

Google Scholar

[55] H. Mutvei, Flexible nacre in the nautiloid Isorthoceras, with remarks on the evolution of cephalopod nacre, Lethaia 16 (1983) 233-240.

DOI: 10.1111/j.1502-3931.1983.tb00660.x

Google Scholar

[56] H. Mutvei, Connecting ring structure and its significance for classification of the orthoceratid cephalopods, Acta Palaeontol. Pol. 47 (2002) 157-168.

Google Scholar

[57] W. Eysel, D.M. Roy, Topotactic reaction of aragonite to hydroxyapatite, Z. Kristallogr. 141 (1975) 11-24.

DOI: 10.1524/zkri.1975.141.1-2.11

Google Scholar

[58] C.M. Zaremba, D.E. Morse, S. Mann, P.K. Hansma, G.D. Stucky, Aragonite-hydroxyapatite conversion in gastropod (abalone) nacre, Chem. Mater. 10 (1998) 3813-3824.

DOI: 10.1021/cm970785g

Google Scholar

[59] P. Álvarez-Lloret, A.B. Rodríguez-Navarro, G. Falini, S. Fermani, M. Ortega-Huertas, Crystallographic control of the hydrothermal conversion of calcitic sea urchin spine (Paracentrotus lividus) into apatite, Cryst. Growth Des. 10 (2010).

DOI: 10.1021/cg101012a

Google Scholar

[60] A. Kasioptas, T. Geisler, C.V. Putnis, C. Perdikouri, A. Putnis, Crystal growth of apatite by replacement of an aragonite precursor, J. Cryst. Growth 312 (2010) 2431-2440.

DOI: 10.1016/j.jcrysgro.2010.05.014

Google Scholar

[61] A. Kasioptas, T. Geisler, C. Perdikouri, C. Trepmann, N. Gussone, A. Putnis, Polycrystalline apatite synthesized by hydrothermal replacement of calcium carbonates, Geochim. Cosmochim. Acta 75 (2011) 3486-3500.

DOI: 10.1016/j.gca.2011.03.027

Google Scholar

[62] H.K. Erben, G. Flajs, A. Siehl, Über die schalenstruktur von monoplacophoren, Abhandlungen der Mathematisch-Naturwissenschaftlichen Klasse Jahrgang 1 (1968) 1-24.

Google Scholar

[63] V.V. Drushchits, L.A. Doguzhayeva, V.G. Korinevskiy, Shell microstructure of the Ordovician monoplacophoran Romaniella Doguzhaeva, 1972, Doklady Earth Sci. Sect. 245 (1979) 232-234.

Google Scholar

[64] R.L. Batten, The calcitic wall in the Paleozoic Families Eumphalidae and Platyceratidae (Archaeogastropoda), J. Paleontol. 58 (1984) 1186-1192.

Google Scholar

[65] U. Balthasar, M. Cusack, L. Faryma, P. Chung, L.E. Holmer, J. Jin, I.G. Percival, L.E. Popov, Relic aragonite from Ordovician-Silurian brachiopods: implications for the evolution of calcification, Geology 39 (2011) 967-970.

DOI: 10.1130/g32269.1

Google Scholar

[66] W. Feng, W. Sun, Phosphate replicated and replaced microstructure of molluscan shells from the earliest Cambrian of China, Acta Palaeontol. Pol. 48 (2003) 21-30.

Google Scholar

[67] J.G. Carter, M.J.S. Tevesz, Shell microstructure of a middle Devonian (Hamilton Group) bivalve fauna from central New York, J. Paleontol. 52 (1978) 859-880.

Google Scholar

[68] R.L. Squires, Burial environment, diagenesis, mineralogy, and Mg and Sr contents of skeletal carbonates in the Buckhorn Asphalt of Middle Pennsylvanian age, Arbuckle Mountains, Oklahoma, Ph.D. dissertation, California Institute of Technology, Pasadena, (1973).

Google Scholar

[69] K. Bandel, A. Nützel, T.E. Yancey, Larval shells and shell microstructures of exceptionally well-preserved Late Carboniferous gastropods from the Buckhorn Asphalt deposit (Oklahoma, USA), Senck. Lethaea 82 (2002) 639-689.

DOI: 10.1007/bf03042954

Google Scholar