[1]
B.C. Tripp, K. Smith, J.G. Ferry, Carbonic anhydrase: new insights for an ancient enzyme, J. Biol. Chem. 276 (2001) 48615-48618.
DOI: 10.1074/jbc.r100045200
Google Scholar
[2]
N.U. Meldrum, F.J. Roughton, Carbonic anhydrase. Its preparation and properties, J. Physiol. 80 (1933) 113-142.
DOI: 10.1113/jphysiol.1933.sp003077
Google Scholar
[3]
W.C. Stadie, H. O'Brien, The catalysis of the hydration of carbon dioxide and dehydration of carbonic acid by an enzyme isolated from red blood cells, J. Biol. Chem. 103 (1933) 521‐529.
DOI: 10.1016/s0021-9258(18)75831-6
Google Scholar
[4]
J.A. Freeman, K.M. Wilbur, Carbonic anhydrase in molluscs, Biol. Bull. 94 (1948) 55-59.
Google Scholar
[5]
K.M. Wilbur, L.H. Jodrey, Studies on shell formation. 5. The inhibition of shell formation by carbonic anhydrase inhibitors, Biol. Bull. 108 (1955) 359‐365.
DOI: 10.2307/1538521
Google Scholar
[6]
T. F. Goreau, The physiology of skeleton formation in corals. 1. A method for measuring the rate of calcium deposition by corals under different conditions, Biol. Bull. 116 (1959) 59-75.
DOI: 10.2307/1539156
Google Scholar
[7]
H. Miyamoto, T. Miyashita, M. Okushima, S. Nakano, T. Morita, A. Matsushiro, A carbonic anhydrase from the nacreous layer in oyster pearls, PNAS 93 (1996) 9657-9660.
DOI: 10.1073/pnas.93.18.9657
Google Scholar
[8]
N. Le Roy, B. Marie, B. Gaume, N. Guichard, S. Delgado, I. Zanella-Cléon, M. Becchi, S. Auzoux-Bordenave, J. -Y. Sire, F. Marin, Identification of two carbonic anhydrases in the shell-forming mantle of the European abalone Haliotis tuberculata (Gastropoda, Haliotidae): phylogenetic implications, J. Exp. Zool. B 318 (2012).
DOI: 10.1002/jez.b.22452
Google Scholar
[9]
B. Marie, D. J. Jackson, P. Ramos-Silva, I. Zanella-Cléon, N. Guichard, F. Marin, The shell-forming proteome of Lottia gigantea reveals both deep conservations and lineage-specific novelties, FEBS J. 280 (2013) 214-232.
DOI: 10.1111/febs.12062
Google Scholar
[10]
X. Song, X. Wang, L. Li, G. Zhang, Identification two novel nacrein-like proteins involved in the shell formation of the pacific oyster Crassostrea gigas, Mol. Biol. Rep. 41 (2014) 4273-4278.
DOI: 10.1007/s11033-014-3298-z
Google Scholar
[11]
M. Kono, N. Hayashi, T. Samata, Molecular mechanism of the nacreous layer formation in Pinctada maxima, Biochem. Biophys. Res. Comm. 269 (2000) 213-218.
DOI: 10.1006/bbrc.2000.2274
Google Scholar
[12]
C. Joubert, D. Piquemal, B. Marie, L. Manchon, F. Pierrat, I. Zanella-Cleon, Cochennec- N. Laureau, Y. Gueguen, C. Montagnani, Transcriptome and proteome analysis of Pinctada margaritifera calcifying mantle and shell: focus on biomineralization, BMC Genomics 11 (2010).
DOI: 10.1186/1471-2164-11-613
Google Scholar
[13]
W. Leggat, R. Dixon, S. Saleh, D. Yellowlees, A novel carbonic anhydrase from the giant clam Tridacna gigas contains two carbonic anhydrase domains, FEBS J. 272 (2005) 3297-3305.
DOI: 10.1111/j.1742-4658.2005.04742.x
Google Scholar
[14]
B. Marie, G. Luquet, L. Bedouet, C. Milet, N. Guichard, D. Medakovic, F. Marin, Nacre calcification in the freshwater mussel Unio pictorum: carbonic anhydrase activity and purification of a 95 kDa calcium-binding glycoprotein, ChemBioChem 9 (2008).
DOI: 10.1002/cbic.200800159
Google Scholar
[15]
National Center for Biotechnology Information on http: /www. ncbi. nlm. nih. gov.
Google Scholar
[16]
B. Gaume, M. Fouchereau-Peron, A. Badou, M. -N. Helléouet, S. Huchette, S. Auzoux-Bordenave, Biomineralization markers during early shell formation in the European abalone Haliotis tuberculata, Linnaeus, Mar. Biol. 158 (2011) 341-353.
DOI: 10.1007/s00227-010-1562-x
Google Scholar
[17]
L. C. Grasso, J. Maindonald, S. Rudd, D. C. Hayward, R. Saint, D. J. Miller, E. E. Ball, Microarray analysis identifies candidate genes for key roles in coral development, BMC Genomics 9 (2008) 1-18.
DOI: 10.1186/1471-2164-9-540
Google Scholar
[18]
O. Voigt, M. Adamski, K. Sluzek, M. Adamska, Calcareous sponge genomes reveal complex evolution of α-carbonic anhydrases and two key biomineralization enzymes, BMC Evol. Biol. 14 (2014) 230.
DOI: 10.1186/s12862-014-0230-z
Google Scholar
[19]
D. J. Jackson, C. Mcdougall, K. Green, F. Simpson, G. Wörheide, B. M. Degnan, A rapidly evolving secretome builds and patterns a sea shell, BMC Biol. 4 (2006) 40.
DOI: 10.1186/1741-7007-4-40
Google Scholar
[20]
B. Gaume, F. Denis, A. Van Wormhoudt, S. Huchette, D. J. Jackson, S. Avignon, S. Auzoux-Bordenave, Characterisation and expression of the biomineralising gene Lustrin A during shell formation of the European abalone Haliotis tuberculata, Comp. Biochem. Physiol. B 169 (2014).
DOI: 10.1016/j.cbpb.2013.11.010
Google Scholar
[21]
N. Le Roy, D. J. Jackson, B. Marie, P. Ramos-Silva, F. Marin, The evolution of metazoan α-carbonic anhydrases and their roles in calcium carbonate biomineralization, Front. Zool. 11 (2014) 75.
DOI: 10.1186/s12983-014-0075-8
Google Scholar
[22]
E. K. O'Brien, B. M. Degnan, Developmental expression of a class IV POU gene in the gastropod Haliotis asinina supports a conserved role in sensory cell development in bilaterians, Dev. Genes Evol. 212 (2002) 394-398.
DOI: 10.1007/s00427-002-0256-x
Google Scholar