Carbonic Anhydrase and Metazoan Biocalcification: A Focus on Molluscs

Article Preview

Abstract:

Carbonic anhydrase is a super-family of metallo-enzymes (containing α, β, γ, ζ and δ-CA families) that catalyse the reversible hydration of carbon dioxide. Among their numerous functions, CAs - in particular that of the α-CA family - are known to play a key role in biocalcification processes, i.e., the ability to deposit calcium carbonate crystallites in a controlled manner to form exoskeletons. In the gastropod mollusc Haliotis tuberculata – the European abalone – we identified two CA transcripts, htCA1 and htCA2, in the mantle, the calcifying organ responsible for shell formation from an extracellular organic matrix and a mixture of inorganic ions. Because these two transcripts are specifically expressed in the mantle, this suggests that the two corresponding CA isoforms may be directly involved in shell formation. In the present paper, whole mount in situ hybridization experiments performed on larval stages of H. tuberculata reveal the expression of htCA1 in cells associated with the statocysts, the sensory organs for gravity, while htCA2 is not expressed in these cells. We compile the activity and expression data for these two CAs in H. tuberculata and discuss these results in an evolutionary context using a simplified phylogeny from compiled CA sequence data of several metazoans. This shows that the evolution of this protein super-family has a complex history with origins at the dawn of the Phanerozoic.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

151-157

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B.C. Tripp, K. Smith, J.G. Ferry, Carbonic anhydrase: new insights for an ancient enzyme, J. Biol. Chem. 276 (2001) 48615-48618.

DOI: 10.1074/jbc.r100045200

Google Scholar

[2] N.U. Meldrum, F.J. Roughton, Carbonic anhydrase. Its preparation and properties, J. Physiol. 80 (1933) 113-142.

DOI: 10.1113/jphysiol.1933.sp003077

Google Scholar

[3] W.C. Stadie, H. O'Brien, The catalysis of the hydration of carbon dioxide and dehydration of carbonic acid by an enzyme isolated from red blood cells, J. Biol. Chem. 103 (1933) 521‐529.

DOI: 10.1016/s0021-9258(18)75831-6

Google Scholar

[4] J.A. Freeman, K.M. Wilbur, Carbonic anhydrase in molluscs, Biol. Bull. 94 (1948) 55-59.

Google Scholar

[5] K.M. Wilbur, L.H. Jodrey, Studies on shell formation. 5. The inhibition of shell formation by carbonic anhydrase inhibitors, Biol. Bull. 108 (1955) 359‐365.

DOI: 10.2307/1538521

Google Scholar

[6] T. F. Goreau, The physiology of skeleton formation in corals. 1. A method for measuring the rate of calcium deposition by corals under different conditions, Biol. Bull. 116 (1959) 59-75.

DOI: 10.2307/1539156

Google Scholar

[7] H. Miyamoto, T. Miyashita, M. Okushima, S. Nakano, T. Morita, A. Matsushiro, A carbonic anhydrase from the nacreous layer in oyster pearls, PNAS 93 (1996) 9657-9660.

DOI: 10.1073/pnas.93.18.9657

Google Scholar

[8] N. Le Roy, B. Marie, B. Gaume, N. Guichard, S. Delgado, I. Zanella-Cléon, M. Becchi, S. Auzoux-Bordenave, J. -Y. Sire, F. Marin, Identification of two carbonic anhydrases in the shell-forming mantle of the European abalone Haliotis tuberculata (Gastropoda, Haliotidae): phylogenetic implications, J. Exp. Zool. B 318 (2012).

DOI: 10.1002/jez.b.22452

Google Scholar

[9] B. Marie, D. J. Jackson, P. Ramos-Silva, I. Zanella-Cléon, N. Guichard, F. Marin, The shell-forming proteome of Lottia gigantea reveals both deep conservations and lineage-specific novelties, FEBS J. 280 (2013) 214-232.

DOI: 10.1111/febs.12062

Google Scholar

[10] X. Song, X. Wang, L. Li, G. Zhang, Identification two novel nacrein-like proteins involved in the shell formation of the pacific oyster Crassostrea gigas, Mol. Biol. Rep. 41 (2014) 4273-4278.

DOI: 10.1007/s11033-014-3298-z

Google Scholar

[11] M. Kono, N. Hayashi, T. Samata, Molecular mechanism of the nacreous layer formation in Pinctada maxima, Biochem. Biophys. Res. Comm. 269 (2000) 213-218.

DOI: 10.1006/bbrc.2000.2274

Google Scholar

[12] C. Joubert, D. Piquemal, B. Marie, L. Manchon, F. Pierrat, I. Zanella-Cleon, Cochennec- N. Laureau, Y. Gueguen, C. Montagnani, Transcriptome and proteome analysis of Pinctada margaritifera calcifying mantle and shell: focus on biomineralization, BMC Genomics 11 (2010).

DOI: 10.1186/1471-2164-11-613

Google Scholar

[13] W. Leggat, R. Dixon, S. Saleh, D. Yellowlees, A novel carbonic anhydrase from the giant clam Tridacna gigas contains two carbonic anhydrase domains, FEBS J. 272 (2005) 3297-3305.

DOI: 10.1111/j.1742-4658.2005.04742.x

Google Scholar

[14] B. Marie, G. Luquet, L. Bedouet, C. Milet, N. Guichard, D. Medakovic, F. Marin, Nacre calcification in the freshwater mussel Unio pictorum: carbonic anhydrase activity and purification of a 95 kDa calcium-binding glycoprotein, ChemBioChem 9 (2008).

DOI: 10.1002/cbic.200800159

Google Scholar

[15] National Center for Biotechnology Information on http: /www. ncbi. nlm. nih. gov.

Google Scholar

[16] B. Gaume, M. Fouchereau-Peron, A. Badou, M. -N. Helléouet, S. Huchette, S. Auzoux-Bordenave, Biomineralization markers during early shell formation in the European abalone Haliotis tuberculata, Linnaeus, Mar. Biol. 158 (2011) 341-353.

DOI: 10.1007/s00227-010-1562-x

Google Scholar

[17] L. C. Grasso, J. Maindonald, S. Rudd, D. C. Hayward, R. Saint, D. J. Miller, E. E. Ball, Microarray analysis identifies candidate genes for key roles in coral development, BMC Genomics 9 (2008) 1-18.

DOI: 10.1186/1471-2164-9-540

Google Scholar

[18] O. Voigt, M. Adamski, K. Sluzek, M. Adamska, Calcareous sponge genomes reveal complex evolution of α-carbonic anhydrases and two key biomineralization enzymes, BMC Evol. Biol. 14 (2014) 230.

DOI: 10.1186/s12862-014-0230-z

Google Scholar

[19] D. J. Jackson, C. Mcdougall, K. Green, F. Simpson, G. Wörheide, B. M. Degnan, A rapidly evolving secretome builds and patterns a sea shell, BMC Biol. 4 (2006) 40.

DOI: 10.1186/1741-7007-4-40

Google Scholar

[20] B. Gaume, F. Denis, A. Van Wormhoudt, S. Huchette, D. J. Jackson, S. Avignon, S. Auzoux-Bordenave, Characterisation and expression of the biomineralising gene Lustrin A during shell formation of the European abalone Haliotis tuberculata, Comp. Biochem. Physiol. B 169 (2014).

DOI: 10.1016/j.cbpb.2013.11.010

Google Scholar

[21] N. Le Roy, D. J. Jackson, B. Marie, P. Ramos-Silva, F. Marin, The evolution of metazoan α-carbonic anhydrases and their roles in calcium carbonate biomineralization, Front. Zool. 11 (2014) 75.

DOI: 10.1186/s12983-014-0075-8

Google Scholar

[22] E. K. O'Brien, B. M. Degnan, Developmental expression of a class IV POU gene in the gastropod Haliotis asinina supports a conserved role in sensory cell development in bilaterians, Dev. Genes Evol. 212 (2002) 394-398.

DOI: 10.1007/s00427-002-0256-x

Google Scholar