Proteins as Functional Units of Biocalcification – An Overview

Article Preview

Abstract:

High-throughput approaches such as genomics, transcriptomics and proteomics have led to the discovery of a larger set of biomineralization genes than previously foreseen. These gene lists are often difficult to decode in light of the current models of calcification. Here we overview the proteins available in UniProt (Universal Protein Resource), that were identified directly in metazoan calcium carbonate mineralized structures or known to have direct key-functions in calcification processes. Functional annotation of the protein datasets using Gene Ontology reveals that functions like carbohydrate binding, structural and catalytic activities (e.g. hydrolase) are commonly represented across the organic matrices.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

183-190

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H.A. Lowenstam, S. Weiner, On Biomineralization, 1st ed., Oxford University Press, New York, (1989).

Google Scholar

[2] D.A. Bazylinski, R.B. Frankel, B.R. Heywood, S. Mann, J.W. King, L. Donaghay, A.K. Hanson, D.A. Bazylinski, R.B. Frankel, B.R. Heywood, S. Mann, J.W. King, P.L. Donaghay, A.K. Hanson, Controlled Biomineralization of Magnetite (Fe3O4) and Greigite (Fe3S4) in a Magnetotactic Bacterium, Appl. Environ. Microbiol. 61 (1995).

DOI: 10.1128/aem.61.9.3232-3239.1995

Google Scholar

[3] N. Kröger, N. Poulsen, Diatoms-from cell wall biogenesis to nanotechnology, Annu. Rev. Genet. 42 (2008) 83–107.

DOI: 10.1146/annurev.genet.41.110306.130109

Google Scholar

[4] M. Marsh, Regulation of CaCO3 formation in coccolithophores, Comp. Biochem. Physiol. Part B (Biochem. Mol. Biol. ) 136 (2003) 743–754.

Google Scholar

[5] M. -L. Lemloh, F. Marin, F. Herbst, L. Plasseraud, M. Schweikert, J. Baier, J. Bill, F. Brümmer, Genesis of amorphous calcium carbonate containing alveolar plates in the ciliate Coleps hirtus (Ciliophora, Prostomatea), J. Struct. Biol. 181 (2013).

DOI: 10.1016/j.jsb.2012.12.001

Google Scholar

[6] Y. -J. Kang, A.K. Stevenson, P.M. Yau, R. Kollmar, Sparc protein is required for normal growth of zebrafish otoliths, J. Assoc. Res. Otolaryngol. 9 (2008) 436–51.

DOI: 10.1007/s10162-008-0137-8

Google Scholar

[7] Y. Xu, H. Zhang, H. Yang, X. Zhao, S. Lovas, Y.Y.W. Lundberg, Expression, functional, and structural analysis of proteins critical for otoconia development, Dev. Dyn. 239 (2010) 2659–73.

DOI: 10.1002/dvdy.22405

Google Scholar

[8] M.T. Hincke, Y. Nys, J. Gautron, K. Mann, A.B. Rodriguez-Navarro, M.D. McKee, The eggshell: structure, composition and mineralization, Front. Biosci. 17 (2012) 1266–80.

DOI: 10.2741/3985

Google Scholar

[9] L. Addadi, S. Weiner, Interactions between acidic proteins and crystals: stereochemical requirements in biomineralization, Proc. Natl. Acad. Sci. U. S. A. 82 (1985) 4110–4.

DOI: 10.1073/pnas.82.12.4110

Google Scholar

[10] B. -A. Gotliv, L. Addadi, S. Weiner, Mollusk shell acidic proteins: in search of individual functions, Chembiochem 4 (2003) 522–9.

DOI: 10.1002/cbic.200200548

Google Scholar

[11] B. -A. Gotliv, N. Kessler, J.L. Sumerel, D.E. Morse, N. Tuross, L. Addadi, S. Weiner, Asprich: A novel aspartic acid-rich protein family from the prismatic shell matrix of the bivalve Atrina rigida, ChembioChem 6 (2005) 304–14.

DOI: 10.1002/cbic.200400221

Google Scholar

[12] T. Mass, J.L. Drake, L. Haramaty, J.D. Kim, E. Zelzion, D. Bhattacharya, P.G. Falkowski, Cloning and Characterization of Four Novel Coral Acid-Rich Proteins that Precipitate Carbonates In Vitro, Curr. Biol. 23 (2013) 1126–31.

DOI: 10.1016/j.cub.2013.05.007

Google Scholar

[13] S. Albeck, S. Weiner, L. Addadi, Polysaccharides of Intracrystalline Glycoproteins Modulate Calcite Crystal Growth In Vitro, Chem. Eur. J. 2 (1996) 278–84.

DOI: 10.1002/chem.19960020308

Google Scholar

[14] K. Mann, A.J. Poustka, M. Mann, Phosphoproteomes of Strongylocentrotus purpuratus shell and tooth matrix: identification of a major acidic sea urchin tooth phosphoprotein, phosphodontin, Proteome Sci. 8 (2010) 6.

DOI: 10.1186/1477-5956-8-6

Google Scholar

[15] F. Marin, P. Corstjens, B. de Gaulejac, E. de Vrind-De Jong, P. Westbroek, Mucins and molluscan calcification Molecular characterization of mucoperlin, a novel mucin-like protein from the nacreous shell layer of the fan mussel Pinna nobilis (Bivalvia, pteriomorphia), J. Biol. Chem. 275 (2000).

DOI: 10.1074/jbc.m003006200

Google Scholar

[16] T. Samata, D. Ikeda, A. Kajikawa, H. Sato, C. Nogawa, D. Yamada, R. Yamazaki, T. Akiyama, A novel phosphorylated glycoprotein in the shell matrix of the oyster Crassostrea nippona, FEBS J. 275 (2008) 2977–89.

DOI: 10.1111/j.1742-4658.2008.06453.x

Google Scholar

[17] W.M. Goldberg, Acid polysaccharides in the skeletal matrix and calicoblastic epithelium of the stony coral Mycetophyllia reesi, Tissue Cell 33 (2001) 376–87.

DOI: 10.1054/tice.2001.0191

Google Scholar

[18] H. Miyamoto, T. Miyashita, M. Okushima, S. Nakano, T. Morita, a Matsushiro, A carbonic anhydrase from the nacreous layer in oyster pearls, Proc. Natl. Acad. Sci. USA 93 (1996) 9657–60.

DOI: 10.1073/pnas.93.18.9657

Google Scholar

[19] J.L. Drake, T. Mass, L. Haramaty, E. Zelzion, D. Bhattacharya, P.G. Falkowski, Proteomic analysis of skeletal organic matrix from the stony coral Stylophora pistillata, Proc. Natl. Acad. Sci. USA 110 (2013) 3788–93.

DOI: 10.1073/pnas.1301419110

Google Scholar

[20] B. Marie, D.J. Jackson, P. Ramos-Silva, I. Zanella-Cléon, N. Guichard, F. Marin, The shell-forming proteome of Lottia gigantea reveals both deep conservations and lineage-specific novelties, FEBS J. 280 (2013) 214–32.

DOI: 10.1111/febs.12062

Google Scholar

[21] B. Marie, C. Joubert, A. Tayalé, I. Zanella-Cléon, C. Belliard, D. Piquemal, N. Cochennec-Laureau, F. Marin, Y. Gueguen, C. Montagnani, Different secretory repertoires control the biomineralization processes of prism and nacre deposition of the pearl oyster shell, Proc. Natl. Acad. Sci. USA 109 (2012).

DOI: 10.1073/pnas.1210552109

Google Scholar

[22] P. Ramos-Silva, J. Kaandorp, L. Huisman, B. Marie, I. Zanella-Cléon, N. Guichard, D.J. Miller, F. Marin, The skeletal proteome of the coral Acropora millepora: the evolution of calcification by co-option and domain shuffling, Mol. Biol. Evol. 30 (2013).

DOI: 10.1093/molbev/mst109

Google Scholar

[23] The Uniprot Consortium, Reorganizing the protein space at the Universal Protein Resource (UniProt), Nucleic Acids Res. 40 (2012) D71–5.

DOI: 10.1093/nar/gkr981

Google Scholar

[24] T.U. Consortium, Activities at the Universal Protein Resource (UniProt), Nucleic Acids Res. 42 (2014) D191–8.

DOI: 10.1093/nar/gkt1140

Google Scholar

[25] M. Ashburner, C.A. Ball, J.A. Blake, D. Botstein, H. Butler, J.M. Cherry, A.P. Davis, K. Dolinski, S.S. Dwight, J.T. Eppig, M.A. Harris, D.P. Hill, L. Issel-Tarver, A. Kasarskis, S. Lewis, J.C. Matese, J.E. Richardson, M. Ringwald, G.M. Rubin, G. Sherlock, Gene ontology: tool for the unification of biology The Gene Ontology Consortium, Nat. Genet. 25 (2000).

DOI: 10.1038/75556

Google Scholar

[26] G. Zhang, X. Fang, X. Guo, L. Li, R. Luo, F. Xu, P. Yang, L. Zhang, X. Wang, H. Qi, Z. Xiong, H. Que, Y. Xie, P.W.H. Holland, J. Paps, Y. Zhu, F. Wu, Y. Chen, J. Wang, C. Peng, et al., The oyster genome reveals stress adaptation and complexity of shell formation, Nature 490 (2012).

DOI: 10.1038/nature11413

Google Scholar

[27] A. Veis, Organic Matrix-related mineralization of sea urchin spicules, spines, test and teeth, Front. Biosci. 16 (2011) 2540.

DOI: 10.2741/3871

Google Scholar

[28] M. Cusack, G. Curry, H. Clegg, G. Abbott, An intracrystalline chromoprotein from red brachiopod shells: implications for the process of biomineralization, Comp. Biochem. Physiol. B. 102 (1992) 93–5.

DOI: 10.1016/0305-0491(92)90278-y

Google Scholar

[29] D.J. Jackson, L. Macis, J. Reitner, B.M. Degnan, G. Wörheide, Sponge paleogenomics reveals an ancient role for carbonic anhydrase in skeletogenesis, Science 316 (2007) 1893–5.

DOI: 10.1126/science.1141560

Google Scholar

[30] M.L.H. Rose, M.T. Hincke, Protein constituents of the eggshell: eggshell-specific matrix proteins, Cell. Mol. Life Sci. 66 (2009) 2707–19.

DOI: 10.1007/s00018-009-0046-y

Google Scholar

[31] K. Mann, F.H. Wilt, A.J. Poustka, Proteomic analysis of sea urchin (Strongylocentrotus purpuratus) spicule matrix, Proteome Sci. 8 (2010) 1–12.

DOI: 10.1186/1477-5956-8-33

Google Scholar