[1]
H.A. Lowenstam, S. Weiner, On Biomineralization, 1st ed., Oxford University Press, New York, (1989).
Google Scholar
[2]
D.A. Bazylinski, R.B. Frankel, B.R. Heywood, S. Mann, J.W. King, L. Donaghay, A.K. Hanson, D.A. Bazylinski, R.B. Frankel, B.R. Heywood, S. Mann, J.W. King, P.L. Donaghay, A.K. Hanson, Controlled Biomineralization of Magnetite (Fe3O4) and Greigite (Fe3S4) in a Magnetotactic Bacterium, Appl. Environ. Microbiol. 61 (1995).
DOI: 10.1128/aem.61.9.3232-3239.1995
Google Scholar
[3]
N. Kröger, N. Poulsen, Diatoms-from cell wall biogenesis to nanotechnology, Annu. Rev. Genet. 42 (2008) 83–107.
DOI: 10.1146/annurev.genet.41.110306.130109
Google Scholar
[4]
M. Marsh, Regulation of CaCO3 formation in coccolithophores, Comp. Biochem. Physiol. Part B (Biochem. Mol. Biol. ) 136 (2003) 743–754.
Google Scholar
[5]
M. -L. Lemloh, F. Marin, F. Herbst, L. Plasseraud, M. Schweikert, J. Baier, J. Bill, F. Brümmer, Genesis of amorphous calcium carbonate containing alveolar plates in the ciliate Coleps hirtus (Ciliophora, Prostomatea), J. Struct. Biol. 181 (2013).
DOI: 10.1016/j.jsb.2012.12.001
Google Scholar
[6]
Y. -J. Kang, A.K. Stevenson, P.M. Yau, R. Kollmar, Sparc protein is required for normal growth of zebrafish otoliths, J. Assoc. Res. Otolaryngol. 9 (2008) 436–51.
DOI: 10.1007/s10162-008-0137-8
Google Scholar
[7]
Y. Xu, H. Zhang, H. Yang, X. Zhao, S. Lovas, Y.Y.W. Lundberg, Expression, functional, and structural analysis of proteins critical for otoconia development, Dev. Dyn. 239 (2010) 2659–73.
DOI: 10.1002/dvdy.22405
Google Scholar
[8]
M.T. Hincke, Y. Nys, J. Gautron, K. Mann, A.B. Rodriguez-Navarro, M.D. McKee, The eggshell: structure, composition and mineralization, Front. Biosci. 17 (2012) 1266–80.
DOI: 10.2741/3985
Google Scholar
[9]
L. Addadi, S. Weiner, Interactions between acidic proteins and crystals: stereochemical requirements in biomineralization, Proc. Natl. Acad. Sci. U. S. A. 82 (1985) 4110–4.
DOI: 10.1073/pnas.82.12.4110
Google Scholar
[10]
B. -A. Gotliv, L. Addadi, S. Weiner, Mollusk shell acidic proteins: in search of individual functions, Chembiochem 4 (2003) 522–9.
DOI: 10.1002/cbic.200200548
Google Scholar
[11]
B. -A. Gotliv, N. Kessler, J.L. Sumerel, D.E. Morse, N. Tuross, L. Addadi, S. Weiner, Asprich: A novel aspartic acid-rich protein family from the prismatic shell matrix of the bivalve Atrina rigida, ChembioChem 6 (2005) 304–14.
DOI: 10.1002/cbic.200400221
Google Scholar
[12]
T. Mass, J.L. Drake, L. Haramaty, J.D. Kim, E. Zelzion, D. Bhattacharya, P.G. Falkowski, Cloning and Characterization of Four Novel Coral Acid-Rich Proteins that Precipitate Carbonates In Vitro, Curr. Biol. 23 (2013) 1126–31.
DOI: 10.1016/j.cub.2013.05.007
Google Scholar
[13]
S. Albeck, S. Weiner, L. Addadi, Polysaccharides of Intracrystalline Glycoproteins Modulate Calcite Crystal Growth In Vitro, Chem. Eur. J. 2 (1996) 278–84.
DOI: 10.1002/chem.19960020308
Google Scholar
[14]
K. Mann, A.J. Poustka, M. Mann, Phosphoproteomes of Strongylocentrotus purpuratus shell and tooth matrix: identification of a major acidic sea urchin tooth phosphoprotein, phosphodontin, Proteome Sci. 8 (2010) 6.
DOI: 10.1186/1477-5956-8-6
Google Scholar
[15]
F. Marin, P. Corstjens, B. de Gaulejac, E. de Vrind-De Jong, P. Westbroek, Mucins and molluscan calcification Molecular characterization of mucoperlin, a novel mucin-like protein from the nacreous shell layer of the fan mussel Pinna nobilis (Bivalvia, pteriomorphia), J. Biol. Chem. 275 (2000).
DOI: 10.1074/jbc.m003006200
Google Scholar
[16]
T. Samata, D. Ikeda, A. Kajikawa, H. Sato, C. Nogawa, D. Yamada, R. Yamazaki, T. Akiyama, A novel phosphorylated glycoprotein in the shell matrix of the oyster Crassostrea nippona, FEBS J. 275 (2008) 2977–89.
DOI: 10.1111/j.1742-4658.2008.06453.x
Google Scholar
[17]
W.M. Goldberg, Acid polysaccharides in the skeletal matrix and calicoblastic epithelium of the stony coral Mycetophyllia reesi, Tissue Cell 33 (2001) 376–87.
DOI: 10.1054/tice.2001.0191
Google Scholar
[18]
H. Miyamoto, T. Miyashita, M. Okushima, S. Nakano, T. Morita, a Matsushiro, A carbonic anhydrase from the nacreous layer in oyster pearls, Proc. Natl. Acad. Sci. USA 93 (1996) 9657–60.
DOI: 10.1073/pnas.93.18.9657
Google Scholar
[19]
J.L. Drake, T. Mass, L. Haramaty, E. Zelzion, D. Bhattacharya, P.G. Falkowski, Proteomic analysis of skeletal organic matrix from the stony coral Stylophora pistillata, Proc. Natl. Acad. Sci. USA 110 (2013) 3788–93.
DOI: 10.1073/pnas.1301419110
Google Scholar
[20]
B. Marie, D.J. Jackson, P. Ramos-Silva, I. Zanella-Cléon, N. Guichard, F. Marin, The shell-forming proteome of Lottia gigantea reveals both deep conservations and lineage-specific novelties, FEBS J. 280 (2013) 214–32.
DOI: 10.1111/febs.12062
Google Scholar
[21]
B. Marie, C. Joubert, A. Tayalé, I. Zanella-Cléon, C. Belliard, D. Piquemal, N. Cochennec-Laureau, F. Marin, Y. Gueguen, C. Montagnani, Different secretory repertoires control the biomineralization processes of prism and nacre deposition of the pearl oyster shell, Proc. Natl. Acad. Sci. USA 109 (2012).
DOI: 10.1073/pnas.1210552109
Google Scholar
[22]
P. Ramos-Silva, J. Kaandorp, L. Huisman, B. Marie, I. Zanella-Cléon, N. Guichard, D.J. Miller, F. Marin, The skeletal proteome of the coral Acropora millepora: the evolution of calcification by co-option and domain shuffling, Mol. Biol. Evol. 30 (2013).
DOI: 10.1093/molbev/mst109
Google Scholar
[23]
The Uniprot Consortium, Reorganizing the protein space at the Universal Protein Resource (UniProt), Nucleic Acids Res. 40 (2012) D71–5.
DOI: 10.1093/nar/gkr981
Google Scholar
[24]
T.U. Consortium, Activities at the Universal Protein Resource (UniProt), Nucleic Acids Res. 42 (2014) D191–8.
DOI: 10.1093/nar/gkt1140
Google Scholar
[25]
M. Ashburner, C.A. Ball, J.A. Blake, D. Botstein, H. Butler, J.M. Cherry, A.P. Davis, K. Dolinski, S.S. Dwight, J.T. Eppig, M.A. Harris, D.P. Hill, L. Issel-Tarver, A. Kasarskis, S. Lewis, J.C. Matese, J.E. Richardson, M. Ringwald, G.M. Rubin, G. Sherlock, Gene ontology: tool for the unification of biology The Gene Ontology Consortium, Nat. Genet. 25 (2000).
DOI: 10.1038/75556
Google Scholar
[26]
G. Zhang, X. Fang, X. Guo, L. Li, R. Luo, F. Xu, P. Yang, L. Zhang, X. Wang, H. Qi, Z. Xiong, H. Que, Y. Xie, P.W.H. Holland, J. Paps, Y. Zhu, F. Wu, Y. Chen, J. Wang, C. Peng, et al., The oyster genome reveals stress adaptation and complexity of shell formation, Nature 490 (2012).
DOI: 10.1038/nature11413
Google Scholar
[27]
A. Veis, Organic Matrix-related mineralization of sea urchin spicules, spines, test and teeth, Front. Biosci. 16 (2011) 2540.
DOI: 10.2741/3871
Google Scholar
[28]
M. Cusack, G. Curry, H. Clegg, G. Abbott, An intracrystalline chromoprotein from red brachiopod shells: implications for the process of biomineralization, Comp. Biochem. Physiol. B. 102 (1992) 93–5.
DOI: 10.1016/0305-0491(92)90278-y
Google Scholar
[29]
D.J. Jackson, L. Macis, J. Reitner, B.M. Degnan, G. Wörheide, Sponge paleogenomics reveals an ancient role for carbonic anhydrase in skeletogenesis, Science 316 (2007) 1893–5.
DOI: 10.1126/science.1141560
Google Scholar
[30]
M.L.H. Rose, M.T. Hincke, Protein constituents of the eggshell: eggshell-specific matrix proteins, Cell. Mol. Life Sci. 66 (2009) 2707–19.
DOI: 10.1007/s00018-009-0046-y
Google Scholar
[31]
K. Mann, F.H. Wilt, A.J. Poustka, Proteomic analysis of sea urchin (Strongylocentrotus purpuratus) spicule matrix, Proteome Sci. 8 (2010) 1–12.
DOI: 10.1186/1477-5956-8-33
Google Scholar