Data Mining Approaches to Identify Biomineralization Related Sequences

Article Preview

Abstract:

Proteomics is an efficient high throughput technique developed to identify proteins from a crude extract using sequence homology. Advances in Next Generation Sequencing (NGS) have led to increase knowledge of several non-model species. In the field of calcium carbonate biomineralization, the paucity of available sequences (such as the ones of mollusc shells) is still a bottleneck in most proteomic studies. Indeed, this technique needs proteins databases to find homology. The aim of this study was to perform different data mining approaches in order to identify novel shell proteins. To this end, we disposed of several publicly non-model molluscs databases. Previously identified molluscan shell matrix sequences were used as keyword to query annotated databases. BLAST tools and KASS program (KEGG Automatic Annotation Server) were developed to analyse other non-annotated databases. Our results suggest that the efficiency of these methods depends on the quality of the shared data. Finally, an in-house shell matrix protein database has been generated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

191-214

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Marin, N. Le Roy, and B. Marie, The formation and mineralization of mollusk shell, Front. Biosci. (Schol Ed) 4 (2012) 1099-1125.

DOI: 10.2741/s321

Google Scholar

[2] L. Addadi, D. Joester, F. Nudelman, and S. Weiner, Mollusk shell formation: A source of new concepts for understanding biomineralization processes, Chem. -Eur. J. 12 (2006) 981-987.

DOI: 10.1002/chem.200500980

Google Scholar

[3] J.S. Evans, Tuning in, to mollusk shell nacre- and prismatic-associated protein terminal sequences. implications for biomineralization and the construction of high performance inorganic-organic composites, Chem. Rev. 108 (2008) 4455-4462.

DOI: 10.1021/cr078251e

Google Scholar

[4] P. Westbroek, F. Marin, A marriage of bone and nacre, Nature 392 (1998) 861-862.

DOI: 10.1038/31798

Google Scholar

[5] X. Wang, B. Liu, J. Xiang, Cloning, characterization and expression of ferritin subunit from clam Meretrix meretrix in different larval stages, Comp. Biochem. Physiol. B-Biochem. Mol. Biol. 154 (2009) 12-16.

DOI: 10.1016/j.cbpb.2009.04.011

Google Scholar

[6] B. Marie, C. Joubert, A. Tayale, I. Zanella-Cleon, C. Belliard, D. Piquemal, N. Cochennec-Laureau, F. Marin, Y. Gueguen, C. Montagnani, Different secretory repertoires control the biomineralization processes of prism and nacre deposition of the pearl oyster shell, Proc. Natl. Acad. Sci. U. S. A. 109 (2012).

DOI: 10.1073/pnas.1210552109

Google Scholar

[7] B. Marie, N. Trinkler, I. Zanella-Cleon, N. Guichard, M. Becchi, C. Paillard, F. Marin, Proteomic identification of novel proteins from the calcifying shell matrix of the manila clam Venerupis Philippinarum, Mar. Biotechnol. 13 (2011) 955-962.

DOI: 10.1007/s10126-010-9357-0

Google Scholar

[8] B. Marie, I. Zanella-Cleon, N. Le Roy, M. Becchi, G. Luquet, F. Marin, Proteomic analysis of the acid-soluble nacre matrix of the bivalve Unio pictorum: Detection of novel carbonic anhydrase and putative protease inhibitor proteins, ChemBioChem 11 (2010).

DOI: 10.1002/cbic.201000276

Google Scholar

[9] A. Rogowska-Wrzesinska, M.C. Le Bihan, M. Thaysen-Andersen, P. Roepstorff, 2D gels still have a niche in proteomics, J. Proteomics 88 (2013) 4-13.

DOI: 10.1016/j.jprot.2013.01.010

Google Scholar

[10] M.C. Baracat-Pereira, M. d.O. Barbosa, M.J. Magalhaes Junior, L.C. Carrijo, P.D. Games, H.O. Almeida, J.F. Sena Netto, M.R. Pereira, E.G. de Barros, Separomics applied to the proteomics and peptidomics of low-abundance proteins: Choice of methods and challenges - A review, Genet. Mol. Biol. 35 (2012).

DOI: 10.1590/s1415-47572012000200009

Google Scholar

[11] A. Matros, S. Kaspar, K. Witzel, H.P. Mock, Recent progress in liquid chromatography-based separation and label-free quantitative plant proteomics, Phytochemistry 72 (2011) 963-974.

DOI: 10.1016/j.phytochem.2010.11.009

Google Scholar

[12] J. Armengaud, J. Trapp, O. Pible, O. Geffard, A. Chaumot, E.M. Hartmann, Non-model organisms, a species endangered by proteogenomics, J. Proteomics 105 (2014) 5-18.

DOI: 10.1016/j.jprot.2014.01.007

Google Scholar

[13] R. Ekblom, J. Galindo, Applications of next generation sequencing in molecular ecology of non-model organisms, Heredity 107 (2011) 1-15.

DOI: 10.1038/hdy.2010.152

Google Scholar

[14] R. Bettencourt, M. Pinheiro, C. Egas, P. Gomes, M. Afonso, T. Shank, R.S. Santos, High-throughput sequencing and analysis of the gill tissue transcriptome from the deep-sea hydrothermal vent mussel Bathymodiolus azoricus, BMC Genomics 11 (2010).

DOI: 10.1186/1471-2164-11-559

Google Scholar

[15] A. Bouétard, C. Noirot, A. -L. Besnard, O. Bouchez, D. Choisne, E. Robe, C. Klopp, L. Lagadic, M.A. Coutellec, Pyrosequencing-based transcriptomic resources in the pond snail Lymnaea stagnalis, with a focus on genes involved in molecular response to Diquat-induced stress, Ecotoxicology 21 (2012).

DOI: 10.1007/s10646-012-0977-1

Google Scholar

[16] P.T.Y. Leung, J.C.H. Ip, S.S.T. Mak, J.W. Qiu, P.K.S. Lam, C.K.C. Wong, L.L. Chan, K.M.Y. Leung, De novo transcriptome analysis of Perna viridis highlights tissue-specific patterns for environmental studies, BMC Genomics 15 (2014).

DOI: 10.1186/1471-2164-15-804

Google Scholar

[17] S. Artigaud, M.A. Thorne, J. Richard, R. Lavaud, F. Jean, J. Flye-Sainte-Marie, L.S. Peck, V. Pichereau, M.S. Clark, Deep sequencing of the mantle transcriptome of the great scallop Pecten maximus, Mar. Genom. 15 (2014) 3-4.

DOI: 10.1016/j.margen.2014.03.006

Google Scholar

[18] D. Niu, L. Wang, F. Sun, Z. Liu, J. Li, Development of Molecular Resources for an Intertidal Clam, Sinonovacula constricta, Using 454 Transcriptome Sequencing, PLoS One 8 (2013).

DOI: 10.1371/journal.pone.0067456

Google Scholar

[19] M.S. Clark, M.A.S. Thorne, F.A. Vieira, J.C.R. Cardoso, D.M. Power, L.S. Peck, Insights into shell deposition in the Antarctic bivalve Laternula elliptica: gene discovery in the mantle transcriptome using 454 pyrosequencing, BMC Genomics 11 (2010).

DOI: 10.1186/1471-2164-11-362

Google Scholar

[20] M. Shi, Y. Lin, G. Xu, L. Xie, X. Hu, Z. Bao, R. Zhang, Characterization of the Zhikong scallop (Chlamys farreri) mantle transcriptome and identification of biomineralization-related genes, Mar. Biotechnol. 15 (2013) 706-715.

DOI: 10.1007/s10126-013-9517-0

Google Scholar

[21] Y. Shi, C. Yu, Z. Gu, X. Zhan, Y. Wang, A. Wang, Characterization of the pearl oyster (Pinctada martensii) mantle transcriptome unravels biomineralization genes, Mar. Biotechnol. 15 (2013) 175-187.

DOI: 10.1007/s10126-012-9476-x

Google Scholar

[22] A. Freer, S. Bridgett, J. Jiang, M. Cusack, Biomineral proteins from Mytilus edulis mantle tissue transcriptome, Mar. Biotechnol. 16 (2014) 34-45.

DOI: 10.1007/s10126-013-9516-1

Google Scholar

[23] C. Zhang, L.P. Xie, J. Huang, L. Chen, R.Q. Zhang, A novel putative tyrosinase involved in periostracum formation from the pearl oyster (Pinctada fucata), Biochem. Biophys. Res. Commun. 342 (2006) 632-639.

DOI: 10.1016/j.bbrc.2006.01.182

Google Scholar

[24] C. McDougall, F. Aguilera, B.M. Degnan, Rapid evolution of pearl oyster shell matrix proteins with repetitive, low-complexity domains, J. R. Soc. Interface 10 (2013).

DOI: 10.1098/rsif.2013.0041

Google Scholar

[25] F. Aguilera, C. McDougall, B.M. Degnan, Evolution of the tyrosinase gene family in bivalve molluscs: Independent expansion of the mantle gene repertoire, Acta Biomater. 10 (2014) 3855-3865.

DOI: 10.1016/j.actbio.2014.03.031

Google Scholar

[26] K. Mann, E. Edsinger-Gonzales, M. Mann, In-depth proteomic analysis of a mollusc shell: acid-soluble and acid-insoluble matrix of the limpet Lottia gigantean, Proteome Sci. 10 (2012).

DOI: 10.1186/1477-5956-10-28

Google Scholar

[27] DeepSeaVent Database. Information on http: /transcriptomics. biocant. pt: 8080/deepSeaVent.

Google Scholar

[28] Pecten maximus mantle transcriptome. Information on http: /ramadda. nerc-bas. ac. uk/repository/entry/show/Polar+Data+Centre/NERC-BAS+Datasets/Genomics.

Google Scholar

[29] Laternula elliptica mantle transcriptome. Information on http: /ramadda. nerc-bas. ac. uk/repository/entry/show/Polar+Data+Centre/NERC-BAS+Datasets/Genomics.

Google Scholar

[30] G. Cochrane, P. Aldebert, N. Althorpe, M. Andersson, W. Baker, A. Baldwin, K. Bates, S. Bhattacharyya, P. Browne, A. van den Broek, M. Castro, K. Duggan, R. Eberhardt, N. Faruque, J. Gamble, C. Kanz, T. Kulikova, C. Lee, R. Leinonen, Q. Lin, V. Lombard, R. Lopez, M. McHale, H. McWilliam, G. Mukherjee, F. Nardone, M.P.G. Pastor, S. Sobhany, P. Stoehr, K. Tzouvara, R. Vaughan, D. Wu, W. Zhu, R. Apweiler, EMBL Nucleotide Sequence Database: developments in 2005, Nucleic Acids Res. 34 (2006).

DOI: 10.1093/nar/gkl913

Google Scholar

[31] The European Molecular Biology Laboratory (EMBL) Nucleotide Sequence Database. Information on http: /www. ebi. ac. uk/embl/index. html.

Google Scholar

[32] F. Marin, G. Luquet, B. Marie, D. Medakovic, Molluscan shell proteins: primary structure, origin, and evolution, Curr. Top. Dev. Biol. 80 (2008) 209-276.

DOI: 10.1016/s0070-2153(07)80006-8

Google Scholar

[33] B. Marie, A. Marie, D.J. Jackson, L. Dubost, B.M. Degnan, C. Milet, F. Marin, Proteomic analysis of the organic matrix of the abalone Haliotis asinina calcified shell, Proteome Sci. 8 (2010).

DOI: 10.1186/1477-5956-8-54

Google Scholar

[34] C. Joubert, D. Piquemal, B. Marie, L. Manchon, F. Pierrat, I. Zanella-Cleon, N. Cochennec-Laureau, Y. Gueguen, C. Montagnani, Transcriptome and proteome analysis of Pinctada margaritifera calcifying mantle and shell: focus on biomineralization, BMC Genomics 11 (2010).

DOI: 10.1186/1471-2164-11-613

Google Scholar

[35] H. Miyamoto, H. Endo, N. Hashimoto, K. Iimura, Y. Isowa, S. Kinoshita, T. Kotaki, T. Masaoka, T. Miki, S. Nakayama, C. Nogawa, A. Notazawa, F. Ohmori, I. Sarashina, M. Suzuki, R. Takagi, J. Takahashi, T. Takeuchi, N. Yokoo, N. Satoh, H. Toyohara, T. Miyashita, H. Wada, T. Samata, K. Endo, H. Nagasawa, S. Asakawa, S. Watabe, The Diversity of Shell Matrix Proteins: Genome-wide Investigation of the Pearl Oyster, Pinctada fucata, Zool. Sci. 30 (2013).

DOI: 10.2108/zsj.30.801

Google Scholar

[36] Y. Deng, Q. Lei, Q. Tian, S. Xie, X. Du, J. Li, L. Wang, Y. Xiong, De novo assembly, gene annotation, and simple sequence repeat marker development using Illumina paired-end transcriptome sequences in the pearl oyster Pinctada maxima, Biosci. Biotechnol. Biochem. 78 (2014).

DOI: 10.1080/09168451.2014.936351

Google Scholar

[37] KEGG Automatic Annotation Server (KAAS). Information on http: /www. genome. jp/tools/kaas.

Google Scholar

[38] J.S. Evans, Aragonite-associated biomineralization proteins are disordered and contain interactive motifs, Bioinformatics 28 (2012) 3182-3185.

DOI: 10.1093/bioinformatics/bts604

Google Scholar

[39] J.H. Waite, Quinone-tanned scleroproteins, in : A.S.M. Saleuddin, K.M. Wilbur, (Eds), The Mollusca. Vol. 4: Physiology, Part 1, Academic Press, New York, 1983, p.467–504.

DOI: 10.1016/b978-0-12-751401-7.50018-1

Google Scholar

[40] K. Nagai, M. Yano, K. Morimoto, H. Miyamoto, Tyrosinase localization in mollusc shells, Comp. Biochem. Physiol. B-Biochem. Mol. Biol. 146 (2007) 207-214.

DOI: 10.1016/j.cbpb.2006.10.105

Google Scholar

[41] P. Huan, G. Liu, H. Wang, B. Liu, Identification of a tyrosinase gene potentially involved in early larval shell biogenesis of the Pacific oyster Crassostrea gigas, Dev. Genes Evol. 223 (2013) 389-394.

DOI: 10.1007/s00427-013-0450-z

Google Scholar

[42] G. Zhang, X. Fang, X. Guo, L. Li, R. Luo, F. Xu, P. Yang, L. Zhang, X. Wang, H. Qi, Z. Xiong, H. Que, Y. Xie, P.W.H. Holland, J. Paps, Y. Zhu, F. Wu, Y. Chen, J. Wang, C. Peng, J. Meng, L. Yang, J. Liu, B. Wen, N. Zhang, Z. Huang, Q. Zhu, Y. Feng, A. Mount, D. Hedgecock, Z. Xu, Y. Liu, T. Domazet-Loso, Y. Du, X. Sun, S. Zhang, B. Liu, P. Cheng, X. Jiang, J. Li, D. Fan, W. Wang, W. Fu, T. Wang, B. Wang, J. Zhang, Z. Peng, Y. Li, N. Li, J. Wang, M. Chen, Y. He, F. Tan, X. Song, Q. Zheng, R. Huang, H. Yang, X. Du, L. Chen, M. Yang, P.M. Gaffney, S. Wang, L. Luo, Z. She, Y. Ming, W. Huang, S. Zhang, B. Huang, Y. Zhang, T. Qu, P. Ni, G. Miao, J. Wang, Q. Wang, C.E.W. Steinberg, H. Wang, N. Li, L. Qian, G. Zhang, Y. Li, H. Yang, X. Liu, J. Wang, Y. Yin, J. Wang, The oyster genome reveals stress adaptation and complexity of shell formation, Nature 490 (2012).

Google Scholar

[43] D.J. Jackson, C. McDougall, K. Green, F. Simpson, G. Woerheide, B.M. Degnan, A rapidly evolving secretome builds and patterns a sea shell, BMC Biology 4 (2006).

DOI: 10.1186/1741-7007-4-40

Google Scholar

[44] S.C. Andrews, P. Arosio, W. Bottke, J.F. Briat, M. Vondarl, P.M. Harrison, J.P. Laulhere, S. Levi, S. Lobreaux, S.J. Yewdall, Structure, function, and evolution of ferritins, J. Inorg. Biochem. 47 (1992) 161-174.

DOI: 10.1016/0162-0134(92)84062-r

Google Scholar

[45] W.W. Wasserman, W.E. Fahl, Functional antioxidant responsive elements, Proc. Natl. Acad. Sci. U. S. A. 94 (1997) 5361-5366.

DOI: 10.1073/pnas.94.10.5361

Google Scholar

[46] Y. Zhang, Q.X. Meng, T.M. Jiang, H.Z. Wang, L.P. Xie, R.Q. Zhang, A novel ferritin subunit involved in shell formation from the pearl oyster (Pinctada fucata), Comp. Biochem. Physiol. B-Biochem. Mol. Biol. 135 (2003) 43-54.

DOI: 10.1016/s1096-4959(03)00050-2

Google Scholar

[47] R.H. Kretsinger, S.E. Rudnick, L.J. Weissman, Crystal structure of calmodulin, J. Inorg. Biochem. 28 (1986) 289-302.

Google Scholar

[48] S. Li, L.P. Xie, C. Zhang, Y. Zhang, M.Z. Gu, R.Q. Zhang, Cloning and expression of a pivotal calcium metabolism regulator: calmodulin involved in shell formation from pearl oyster (Pinctada fucata), Comp. Biochem. Physiol. B-Biochem. Mol. Biol. 138 (2004).

DOI: 10.1016/j.cbpc.2004.03.012

Google Scholar

[49] S. Li, L.P. Xie, Z.J. Ma, R.Q. Zhang, cDNA cloning and characterization of a novel calmodulin-like protein from pearl oyster Pinctada fucata, FEBS J. 272 (2005) 4899-4910.

DOI: 10.1111/j.1742-4658.2005.04899.x

Google Scholar

[50] Z. Yan, Z. Fang, Z. Ma, J. Deng, S. Li, L. Xie, R. Zhang, Biomineralization: Functions of calmodulin-like protein in the shell formation of pearl oyster, Biochim. Biophys. Acta-Gen. Subj. 1770 (2007) 1338-1344.

DOI: 10.1016/j.bbagen.2007.06.018

Google Scholar

[51] L.G. Zeng, J.H. Wang, Y.J. Li, J.Q. Sheng, Q. Gu, Y.J. Hong, Molecular characteristics and expression of calmodulin cDNA from the freshwater pearl mussel, Hyriopsis schlegelii, Genet. Mol. Res. 11 (2012) 42-52.

DOI: 10.4238/2012.january.9.5

Google Scholar

[52] M. Cristina Romero-Rodriguez, J. Pascual, L. Valledor, J. Jorrin-Novo, Improving the quality of protein identification in non-model species. Characterization of Quercus ilex seed and Pinus radiata needle proteomes by using SEQUEST and custom databases, J. Proteomics 105 (2014).

DOI: 10.1016/j.jprot.2014.01.027

Google Scholar

[53] A. Abzhanov, C.G. Extavour, A. Groover, S.A. Hodges, H.E. Hoekstra, E.M. Kramer, A. Monteiro, Are we there yet? Tracking the development of new model systems, Trends Genet. 24 (2008) 353-360.

DOI: 10.1016/j.tig.2008.04.002

Google Scholar

[54] S.A. Goff, M. Vaughn, S. McKay, E. Lyons, A.E. Stapleton, D. Gessler, N. Matasci, L. Wang, M. Hanlon, A. Lenards, A. Muir, N. Merchant, S. Lowry, S. Mock, M. Helmke, A. Kubach, M. Narro, N. Hopkins, D. Micklos, U. Hilgert, M. Gonzales, C. Jordan, E. Skidmore, R. Dooley, J. Cazes, R. McLay, Z. Lu, S. Pasternak, L. Koesterke, W.H. Piel, R. Grene, C. Noutsos, K. Gendler, X. Feng, C. Tang, M. Lent, S. -J. Kim, K. Kvilekval, B.S. Manjunath, V. Tannen, A. Stamatakis, M. Sanderson, S.M. Welch, K.A. Cranston, P. Soltis, D. Soltis, B. O'Meara, C. Ane, T. Brutnell, D.J. Kleibenstein, J.W. White, J. Leebens-Mack, M.J. Donoghue, E.P. Spalding, T.J. Vision, C.R. Myers, D. Lowenthal, B.J. Enquist, B. Boyle, A. Akoglu, G. Andrews, S. Ram, D. Ware, L. Stein, D. Stanzione, The iPlant collaborative: cyberinfrastructure for plant biology, Front. Plant Sci. 2 (2011).

DOI: 10.3389/fpls.2011.00034

Google Scholar

[55] E. Kolker, V. Ozdemir, L. Martens, W. Hancock, G. Anderson, N. Anderson, S. Aynacioglu, A. Baranova, S.R. Campagna, R. Chen, J. Choiniere, S.P. Dearth, W. -C. Feng, L. Ferguson, G. Fox, D. Frishman, R. Grossman, A. Heath, R. Higdon, M.H. Hutz, I. Janko, L. Jiang, S. Joshi, A. Kel, J.W. Kemnitz, I.S. Kohane, N. Kolker, D. Lancet, E. Lee, W. Li, A. Lisitsa, A. Llerena, C. MacNealy-Koch, J. -C. Marshall, P. Masuzzo, A. May, G. Mias, M. Monroe, E. Montague, S. Mooney, A. Nesvizhskii, S. Noronha, G. Omenn, H. Rajasimha, P. Ramamoorthy, J. Sheehan, L. Smarr, C.V. Smith, T. Smith, M. Snyder, S. Rapole, S. Srivastava, L. Stanberry, E. Stewart, S. Toppo, P. Uetz, K. Verheggen, B.H. Voy, L. Warnich, S.W. Wilhelm, G. Yandl, Toward more transparent and reproducible OMICS studies through a common metadata checklist and data publications, OMICS 18 (2014).

DOI: 10.1089/big.2013.0039

Google Scholar

[56] M. Snyder, G. Mias, L. Stanberry, E. Kolker, Metadata checklist for the integrated personal OMICS study: Proteomics and metabolomics experiments, OMICS 18 (2014) 81-85.

DOI: 10.1089/omi.2013.0148

Google Scholar

[57] S. Choudhury, J.R. Fishman, M.L. McGowan, E.T. Juengst, Big data, open science and the brain: lessons learned from genomics, Front. Hum. Neurosci. 8 (2014).

DOI: 10.3389/fnhum.2014.00239

Google Scholar

[58] A.I. Nesvizhskii, Proteogenomics: concepts, applications and computational strategies, Nat. Methods 11 (2014) 1114-1125.

DOI: 10.1038/nmeth.3144

Google Scholar

[59] S.W. Robinson, M. Fernandes, H. Husi, Current advances in systems and integrative biology, Comput. Struct. Biotechnol. J. 11 (2014) 35-46.

Google Scholar

[60] L. Martin, C. Cook, N. Matasci, J. Williams, R. Bastow, Data mining with iPlant: A meeting report from the 2013 GARNet workshop, Data mining with iPlant, J. Exp. Bot. 66 (2015) 1-6.

DOI: 10.1093/jxb/eru402

Google Scholar