Thermal Stability of Nacre Proteins of the Polynesian Pearl Oyster: A Proteomic Study

Article Preview

Abstract:

Mollusc shells are organic-inorganic composites that are often preserved in the fossil record. However, the way the organic fraction, also called shell matrix, gets fossilized remains an unsolved question, in spite of several old and more recent studies. In the present paper, we have tried to mimic a diagenetic process by constantly heating for ten days at 100°C fresh nacre powder samples of the Polynesian pearl oyster Pinctada margaritifera. Each day, aliquots of nacre powder were sampled and the matrix was subsequently extracted. It was further analysed by direct weigh quantification, by immunological techniques and by proteomics. Our preliminary data suggest that nacre proteins, when heated at 100°C in dry condition, degrade rather slowly. We evidenced a differential degradation pattern of the soluble and insoluble fractions, and showed that some nacre proteins of the insoluble fraction are stable after ten days of heating. Factors that influence the diagenetic stability of some shell proteins are discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

222-231

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Marin, N. Le Roy, B. Marie, The formation and mineralization of mollusk shell, Front. Biosci. (Schol. Ed. ) 4 (2012) 1099-1125.

DOI: 10.2741/s321

Google Scholar

[2] M.E. Tucker, Diagenesis. Skeletal carbonates, in : D.E.G. Briggs, P.R. Crowther (Eds. ), Palaeobiology : a Synthesis, Blackwell Scientific Publications, Oxford, (1990).

Google Scholar

[3] R.W.G. Wyckoff, The Biochemistry of Animal Fossils, Scientechnica, Bristol, UK, (1972).

Google Scholar

[4] P.E. Hare, T.C. Hoering, K. King Jr., Biogeochemistry of Amino Acids, Wiley, (1980).

Google Scholar

[5] G.A. Goodfriend, M.J. Collins, M.L. Fogel, S.A. Macko, J.F. Wehmiller, Perspectives in Amino Acid and Protein Geochemistry, Oxford University Press, Oxford, (2000).

Google Scholar

[6] B. Demarchi, M.G. Williams, N. Milner, N. Russell, G. Bailey, K. Penkman, Amino acid racemization dating of marine shells: a mound of possibilities, Quatern. Int. 239 (2011) 114-124.

DOI: 10.1016/j.quaint.2010.05.029

Google Scholar

[7] B. Demarchi, K. Rogers, D.A. Fa, C.J. Finlayson, N. Milner, K.E.H. Penkman, Intra-crystalline protein diagenesis (IcPD) in Patella vulgata. Part I: Isolation and testing of the closed system, Quatern. Geochronol. 16 (2013) 144-157.

DOI: 10.1016/j.quageo.2012.03.016

Google Scholar

[8] P.E. Hare, T.C. Hoering, The organic constituents of fossil mollusc shells, Carnegie Inst. Wash. Year Book 78 (1977) 625-631.

Google Scholar

[9] B. Marie, G. Luquet, J.P. Pais De Barros, N. Guichard, S. Morel, G. Alcaraz, L. Bollache, F. Marin, The shell matrix of the freshwater mussel Unio pictorum (Paleoheterodonta, Unionoida). Involvement of acidic polysaccharides from glycoproteins in nacre mineralization, FEBS J. 274 (2007).

DOI: 10.1111/j.1742-4658.2007.05825.x

Google Scholar

[10] F. Marin, M. Gillibert, P. Wesbroek, G. Muyzer, Y. Dauphin, Evolution: disjunct degeneration of immunological determinants, Geol. Mijnbouw 78 (1999) 135-139.

DOI: 10.1023/a:1003882928828

Google Scholar

[11] F. Marin, G. Muyzer, Y. Dauphin, Caractérisation électrophorétique et immunologique des matrices organiques solubles de deux Bivalves Ptériomorphes actuels, Pinna nobilis L. et Pinctada margaritifera (L. ), C. R. Acad. Sci. Paris 318 Sér. II (1994).

Google Scholar

[12] B. Marie, C. Joubert, A. Tayalé, I. Zanella-Cléon, C. Belliard, D. Piquemal, N. Cochennec-Loreau, F. Marin, Y. Gueguen, C. Montagnani, Different secretory repertoires control the biomineralization processes of prisms and nacre deposition of the pearl oyster shell, Proc. Natl. Acad. Sci. USA 109 (2012).

DOI: 10.1073/pnas.1210552109

Google Scholar

[13] J.M. Kanold, F. Immel, C. Broussard, N. Guichard, L. Plasseraud, M. Corneillat, G. Alcaraz, F. Bruemmer, F. Marin, The skeletal test matrix of the echinoid Arbacia lixula, Comp. Biochem. Physiol. D 13 (2015) 24-34.

DOI: 10.1016/j.cbd.2014.12.002

Google Scholar

[14] F. Marin, V. Morin, F. Knap, N. Guichard, B. Marie, G. Luquet, P. Westbroek, D. Medakovic, Caspartin: thermal stability and occurrence in mollusk calcified tissues, in: J.L. Arias, M.S. Fernandez (Eds. ), Biomineralization, from Paleontology to Materials Science, Editorial Universitaria, Santiago de Chile, 2007, pp.281-288.

Google Scholar

[15] F. Marin, B. Pokroy, G. Luquet, P. Layrolle, K. De Groot, Protein mapping of calcium carbonate biominerals by immunogold, Biomaterials 28 (2007) 2368-2377.

DOI: 10.1016/j.biomaterials.2007.01.029

Google Scholar

[16] H. Nakahara, Nacre formation in bivalve and gastropod molluscs, in: S. Suga, H. Nakahara (Eds. ), Mechanisms and Phylogeny of Mineralization in Biological Systems, Springer-Verlag, Tokyo, 1991, pp.343-350.

DOI: 10.1007/978-4-431-68132-8_55

Google Scholar

[17] M. Rousseau, E. Lopez, P. Stempflé, M. Brendlé, L. Franke, A. Guette, R. Naslain, X. Bourrat, Multiscale structure of sheet nacre, Biomaterials 26 (2005) 6254-6262.

DOI: 10.1016/j.biomaterials.2005.03.028

Google Scholar