[1]
F. Marin, N. Le Roy, B. Marie, The formation and mineralization of mollusk shell, Front. Biosci. (Schol. Ed. ) 4 (2012) 1099-1125.
DOI: 10.2741/s321
Google Scholar
[2]
M.E. Tucker, Diagenesis. Skeletal carbonates, in : D.E.G. Briggs, P.R. Crowther (Eds. ), Palaeobiology : a Synthesis, Blackwell Scientific Publications, Oxford, (1990).
Google Scholar
[3]
R.W.G. Wyckoff, The Biochemistry of Animal Fossils, Scientechnica, Bristol, UK, (1972).
Google Scholar
[4]
P.E. Hare, T.C. Hoering, K. King Jr., Biogeochemistry of Amino Acids, Wiley, (1980).
Google Scholar
[5]
G.A. Goodfriend, M.J. Collins, M.L. Fogel, S.A. Macko, J.F. Wehmiller, Perspectives in Amino Acid and Protein Geochemistry, Oxford University Press, Oxford, (2000).
Google Scholar
[6]
B. Demarchi, M.G. Williams, N. Milner, N. Russell, G. Bailey, K. Penkman, Amino acid racemization dating of marine shells: a mound of possibilities, Quatern. Int. 239 (2011) 114-124.
DOI: 10.1016/j.quaint.2010.05.029
Google Scholar
[7]
B. Demarchi, K. Rogers, D.A. Fa, C.J. Finlayson, N. Milner, K.E.H. Penkman, Intra-crystalline protein diagenesis (IcPD) in Patella vulgata. Part I: Isolation and testing of the closed system, Quatern. Geochronol. 16 (2013) 144-157.
DOI: 10.1016/j.quageo.2012.03.016
Google Scholar
[8]
P.E. Hare, T.C. Hoering, The organic constituents of fossil mollusc shells, Carnegie Inst. Wash. Year Book 78 (1977) 625-631.
Google Scholar
[9]
B. Marie, G. Luquet, J.P. Pais De Barros, N. Guichard, S. Morel, G. Alcaraz, L. Bollache, F. Marin, The shell matrix of the freshwater mussel Unio pictorum (Paleoheterodonta, Unionoida). Involvement of acidic polysaccharides from glycoproteins in nacre mineralization, FEBS J. 274 (2007).
DOI: 10.1111/j.1742-4658.2007.05825.x
Google Scholar
[10]
F. Marin, M. Gillibert, P. Wesbroek, G. Muyzer, Y. Dauphin, Evolution: disjunct degeneration of immunological determinants, Geol. Mijnbouw 78 (1999) 135-139.
DOI: 10.1023/a:1003882928828
Google Scholar
[11]
F. Marin, G. Muyzer, Y. Dauphin, Caractérisation électrophorétique et immunologique des matrices organiques solubles de deux Bivalves Ptériomorphes actuels, Pinna nobilis L. et Pinctada margaritifera (L. ), C. R. Acad. Sci. Paris 318 Sér. II (1994).
Google Scholar
[12]
B. Marie, C. Joubert, A. Tayalé, I. Zanella-Cléon, C. Belliard, D. Piquemal, N. Cochennec-Loreau, F. Marin, Y. Gueguen, C. Montagnani, Different secretory repertoires control the biomineralization processes of prisms and nacre deposition of the pearl oyster shell, Proc. Natl. Acad. Sci. USA 109 (2012).
DOI: 10.1073/pnas.1210552109
Google Scholar
[13]
J.M. Kanold, F. Immel, C. Broussard, N. Guichard, L. Plasseraud, M. Corneillat, G. Alcaraz, F. Bruemmer, F. Marin, The skeletal test matrix of the echinoid Arbacia lixula, Comp. Biochem. Physiol. D 13 (2015) 24-34.
DOI: 10.1016/j.cbd.2014.12.002
Google Scholar
[14]
F. Marin, V. Morin, F. Knap, N. Guichard, B. Marie, G. Luquet, P. Westbroek, D. Medakovic, Caspartin: thermal stability and occurrence in mollusk calcified tissues, in: J.L. Arias, M.S. Fernandez (Eds. ), Biomineralization, from Paleontology to Materials Science, Editorial Universitaria, Santiago de Chile, 2007, pp.281-288.
Google Scholar
[15]
F. Marin, B. Pokroy, G. Luquet, P. Layrolle, K. De Groot, Protein mapping of calcium carbonate biominerals by immunogold, Biomaterials 28 (2007) 2368-2377.
DOI: 10.1016/j.biomaterials.2007.01.029
Google Scholar
[16]
H. Nakahara, Nacre formation in bivalve and gastropod molluscs, in: S. Suga, H. Nakahara (Eds. ), Mechanisms and Phylogeny of Mineralization in Biological Systems, Springer-Verlag, Tokyo, 1991, pp.343-350.
DOI: 10.1007/978-4-431-68132-8_55
Google Scholar
[17]
M. Rousseau, E. Lopez, P. Stempflé, M. Brendlé, L. Franke, A. Guette, R. Naslain, X. Bourrat, Multiscale structure of sheet nacre, Biomaterials 26 (2005) 6254-6262.
DOI: 10.1016/j.biomaterials.2005.03.028
Google Scholar