Biocomposites for Orthopedic and Dental Application

Article Preview

Abstract:

The development of polymer and inorganic filler lead to new biocomposite materials with a wide range of applications in orthopedic and dental application. Biomposites possess an excellent biocompatibility, biodegradability and superior mechanical properties. The inclusion of bioactive filler of hydroxyapatite, wollastonite glass-ceramics and bioactive glass could provide bioactivity of biocomposites. This review summarizes the recent work on the development of biocomposites containing biopolymers with different bioactive particles suitable for use in bone defects/bone regeneration and dental application.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

261-275

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.F. Williams, Definitions in biomaterials, Proceedings of a Consensus Conference of the European Society for Biomaterials, Chester, England, March 3–5, 1986, 4, Elsevier, NewYork, (1987).

Google Scholar

[2] D.F. Williams, The Williams Dictionary of Biomaterials, Liverpool University Press, Liverpool, United Kingdom (1999).

Google Scholar

[3] K.A. Athanasiou, C. Zhu, D.R. Lanctot, C.M. Agrawal, X. Wang, Fundamentals of biomechanics in tissue engineering of bone, Tissue Eng. 6 (2000) 361-81.

DOI: 10.1089/107632700418083

Google Scholar

[4] F. Bronner, M.C. Farach-Carson, A. G. Mikos, Engineering of Functional Skeletal Tissues (Topics in Bone Biology), Springer, (2006).

Google Scholar

[5] H.J. Donahue, Q. Chen, C.R. Jacobs, M.M. Saunders, C.E. Yellowley, Bone cells and mechanotransduction. In: Rosier R, Evans C, eds. Molecular Biology in Orthopaedics. American Academy of Orthopaedic Surgeons, Scottsdate, (2001).

Google Scholar

[6] M. Levine, Topics in Dental Biochemistry, Springer, (2011).

Google Scholar

[7] K.M. Hargreaves, L.H. Berman, Cohen's Pathways of the Pulp Expert Consult, 10th Edition, Mosby, (2011).

Google Scholar

[8] S.W. Shalaby, U. Salz, Polymers for Dental and Orthopedic Applications, 1st edition, CRC Press; (2006).

Google Scholar

[9] B. Li, B. Guo, H. Fan, X. Zhang, Preparation of nano-hydroxyapatite particles with different morphology and their response to highly malignant melanoma cells in vitro, Appl. Surf. Sci. 255 (2008) 357-360.

DOI: 10.1016/j.apsusc.2008.06.114

Google Scholar

[10] W.I. Abdel-Fattah, T.A. Elkhooly, Nano-beta-tricalcium phosphates synthesis and biodegradation: 2. Biodegradation and apatite layer formation on nano-beta-TCP synthesized via microwave treatment, Biomed Mater. 5 (2010) 035015.

DOI: 10.1088/1748-6041/5/3/035015

Google Scholar

[11] Y. Yoshimine, A. Akamine, M. Mukai, K. Maeda, M. Matsukura, Y. Kimura, T. Makishima, Biocompatibility of tetracalcium phosphate cement when used as a bone substitute, Biomaterials 14 (1993) 403-6.

DOI: 10.1016/0142-9612(93)90141-n

Google Scholar

[12] S.A. Saadaldin, A.S. Rizkalla, Synthesis and characterization of wollastonite glass-ceramics for dental implant applications, Dent Mater. 30 (2014) 364-71.

DOI: 10.1016/j.dental.2013.12.007

Google Scholar

[13] H.H. Beherei, K.R. Mohamed, G.T. El-Bassyouni, Fabrication and characterization of bioactive glass (45S5)/titania biocomposites, Ceramics Int. 35 (2009) 1991–(1997).

DOI: 10.1016/j.ceramint.2008.10.014

Google Scholar

[14] R.Z. LeGeros, Calcium Phosphates in Oral Biology and Medicine; Karger: Basel, Switzerland, (1991).

Google Scholar

[15] R.W. Arcís, A. López-Macipe, M. Toledano, E. Osorio, R. Rodríguez-Clemente, J. Murtra, M.A. Fanovich, C.D. Pascual, Mechanical properties of visible light-cured resins reinforced with hydroxyapatite for dental restoration, Dent Mater. 18 (2002).

DOI: 10.1016/s0109-5641(01)00019-7

Google Scholar

[16] R. Labella, M. Braden, S. Deb, Novel hydroxyapatite-based dental composites, Biomaterials 15 (1994) 1197-200.

DOI: 10.1016/0142-9612(94)90269-0

Google Scholar

[17] C Domingo, RW Arcís, E Osorio, R Osorio, MA Fanovich, R Rodríguez-Clemente, M Toledano, Hydrolytic stability of experimental hydroxyapatite-filled dental composite materials, Dent Mater. 19 (2003) 478-86.

DOI: 10.1016/s0109-5641(02)00093-3

Google Scholar

[18] C. Santos, Z.B. Luklinska, R.L. Clarke, K.W. Davy, Hydroxyapatite as a filler for dental composite materials: mechanical properties and in vitro bioactivity of composites, J. Mater. Sci. Mater. Med. 12 (2001) 565-73.

Google Scholar

[19] A. Sionkowska, J. Kozłowska, Properties and modification of porous 3-D collagen/hydroxyapatite composites, Int. J. Biol. Macromol. 52 (2013) 250-9.

DOI: 10.1016/j.ijbiomac.2012.10.002

Google Scholar

[20] G. Tripathi, B. Basu, A porous hydroxyapatite scaffold for bone tissue engineering: Physico-mechanical and biological evaluations, Ceramics Int. 38 (2012) 341-349.

DOI: 10.1016/j.ceramint.2011.07.012

Google Scholar

[21] S.A. Salman, K. Kuroda, M. Okido, Preparation and characterization of hydroxyapatite coating on AZ31 Mg Alloy for implant applications, Bioinorg. Chem. Appl. 2013 (2013) 1-6.

DOI: 10.1155/2013/175756

Google Scholar

[22] N. Roveri, E. Foresti, M. Lelli, I.G. Lesci, Recent advancements in preventing teeth health hazard: the daily use of hydroxyapatite instead of fluoride, Recent Pat. Biomed. Eng. 2 (2009) 197-215.

DOI: 10.2174/1874764710902030197

Google Scholar

[23] T.J. Webster, R.W. Siegel, R. Bizios, Enhanced functions of osteoblasts on nanophase ceramics, Biomaterials 21 (2000) 1803–10.

DOI: 10.1016/s0142-9612(00)00075-2

Google Scholar

[24] S. Manafi, M.R. Rahimipou, Synthesis of nanocrystalline hydroxyapatite nanorods via hydrothermal conditions, Chem. Eng. Technol. 34 (2011) 972–976.

DOI: 10.1002/ceat.201000393

Google Scholar

[25] G.J. Poinern, R. Brundavanam, X.T. Le, S. Djordjevic, M. Prokic, D. Fawcett, Thermal and ultrasonic influence in the formation of nanometer scale hydroxyapatite bio-ceramic, Int. J. Nanomed. 6 (2011) 2083-95.

DOI: 10.2147/ijn.s24790

Google Scholar

[26] F. Bakan, O. Laçin, H. Sarac, A novel low temperature sol–gel synthesis process for thermally stable nano crystalline hydroxyapatite, Powder Technol. 233 (2013) 295–302.

DOI: 10.1016/j.powtec.2012.08.030

Google Scholar

[27] J.R. Jones, Review of bioactive glass: from Hench to hybrids, Acta Biomater. 9 (2013) 4457-86.

Google Scholar

[28] H. Zhu, C. Hu, F. Zhang, X. Feng, J. Li, T. Liu, J. Chen, J. Zhang, Preparation and antibacterial property of silver-containing mesoporous 58S bioactive glass, Mater. Sci. Eng. C Mater. Biol. Appl. 42 (2014) 22-30.

DOI: 10.1016/j.msec.2014.05.004

Google Scholar

[29] M.N. Rahaman, D.E. Day, B.S. Bal, Q. Fu, S.B. Jung, L.F. Bonewald, A.P. Tomsia, Bioactive glass in tissue engineering, Acta Biomater. 7 (2011) 2355-73.

DOI: 10.1016/j.actbio.2011.03.016

Google Scholar

[30] A. Hoppe, N.S. Güldal, A.R. Boccaccini, A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics, Biomaterials 32 (2011) 2757-74.

DOI: 10.1016/j.biomaterials.2011.01.004

Google Scholar

[31] A.A. Gorustovich, J.M. López, M.B. Guglielmotti, R.L. Cabrini, Biological performance of boron-modified bioactive glass particles implanted in rat tibia bone marrow, Biomed. Mater. 1 (2006) 100-5.

DOI: 10.1088/1748-6041/1/3/002

Google Scholar

[32] C. Wu, Y. Zhou, M. Xu, P. Han, L. Chen, J. Chang, Y. Xiao, Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity, Biomaterials 34 (2013).

DOI: 10.1016/j.biomaterials.2012.09.066

Google Scholar

[33] S. Ramakrishna, G.V. Kumar, A.W. Batchelor, J. Mayer, An introduction to biocomposites, Edition: 1st, World Scientific Pub Co Inc., (2004).

Google Scholar

[34] G. Furtos, B. Baldea, L. Silaghi-Dumitrescu, M. Moldovan, C. Prejmerean, L. Nica, Influence of the inorganic filler content on the radiopacity of several dental resin cements, Dent. Mater. J. 31(2) (2012) 266-72.

DOI: 10.4012/dmj.2011-225

Google Scholar

[35] G. Furtos, L. Silaghi-Dumitrescu, M. Moldovan, B. Baldea, R. Trusca, C. Prejmerean, Influence of filler/reinforcing agent and post-curing on the flexural properties of woven and unidirectional glass fiber reinforced composites, J. Mater. Sci. 47 (2012).

DOI: 10.1007/s10853-011-6169-1

Google Scholar

[36] G. Furtos, M. Tomoaia-Cotisel, C. Prejmerean, Resin composites reinforced by glass fibers with potential biomedical structure and mechanical properties, Particul. Sci. Technol. 31 (2013) 332-339.

DOI: 10.1080/02726351.2012.736458

Google Scholar

[37] A. Sugino, T. Miyazaki, G. Kawachi, K. Kikuta, C. Ohtsuki, Relationship between apatite-forming ability and mechanical properties of bioactive PMMA-based bone cement modified with calcium salts and alkoxysilane, J. Mater. Sci. Mater. Med. 19 (2008).

DOI: 10.1007/s10856-007-3257-5

Google Scholar

[38] M.J. Dalby, L. Di Silvio, E.J. Harper, W. Bonfield, Increasing hydroxyapatite incorporation into poly(methylmethacrylate) cement increases osteoblast adhesion and response, Biomaterials 23 (2002) 569-76.

DOI: 10.1016/s0142-9612(01)00139-9

Google Scholar

[39] K. Serbetçi, F. Korkusuz, N. Hasirci, Mechanical and thermal properties of hydroxyapatite-impregnated bone cement, Turk. J. Med. Sci. 30 (2000) 543–549.

Google Scholar

[40] S.Y. Kwon, Y.S. Kim, Y.K. Woo, S.S. Kim, J.B. Park, Hydroxyapatite impregnated bone cement: in vitro and in vivo studies, Biomed. Mater. Eng. 7 (1997) 129-40.

DOI: 10.3233/bme-1997-7205

Google Scholar

[41] R.L. Reis, Polymer Based Systems on Tissue Engineering, Replacement and Regeneration (Reis RL and Cohn D, eds). Dordrecht: Kluwer Academic Publishers, (2002).

Google Scholar

[42] C. John, Middleton, Arthur J. Tipton, Synthetic biodegradable polymers as orthopedic devices, Biomaterials 21 (2000) 2335-2346.

DOI: 10.1016/s0142-9612(00)00101-0

Google Scholar

[43] Athanasiou KA, Agrawal CE, Barber FA, Burkhart SS. Orthopaedic applications for PLA-PGA biodegradable polymers, J. Arthrosc. Relat. Surg. 14 (1998) 726-737.

DOI: 10.1016/s0749-8063(98)70099-4

Google Scholar

[44] C.T. Kao, T.H. Huang, Y.J. Chen, C.J. Hung, C.C. Lin, M.Y. Shie, Using calcium silicate to regulate the physicochemical and biological properties when using β-tricalcium phosphate as bone cement, Mater. Sci. Eng. C Mater. Biol. Appl. 1 (2014).

DOI: 10.1016/j.msec.2014.06.030

Google Scholar

[45] D. Loca, M. Sokolova, J. Locs, A. Smirnova, Z. Irbe, Calcium phosphate bone cements for local vancomycin delivery, Mater. Sci. Eng. C 49 (2015) 106-113.

DOI: 10.1016/j.msec.2014.12.075

Google Scholar

[46] N. Ahola, M. Veiranto, J. Rich, A. Efimov, M. Hannula, J. Seppälä, M. Kellomäki, Hydrolytic degradation of composites of poly(L-lactide-co-epsilon-caprolactone) 70/30 and β-tricalcium phosphate, J. Biomater. Appl. 28 (2013) 529-43.

DOI: 10.1177/0885328212462258

Google Scholar

[47] K.U. Lewandrowski, S.P. Bondre, M. Shea, C.M. Untch, W.C. Hayes, D.D. Hile, D.L. Wise, D.J. Trantolo, Composite resorbable polymer/hydroxylapatite composite screws for fixation of osteochondral osteotomies, Biomed. Mater. Eng. 12 (2002) 423-38.

DOI: 10.1163/156856202320892984

Google Scholar

[48] H. Akagi, M. Iwata, T. Ichinohe, H. Amimoto, Y. Hayashi, N. Kannno, H. Ochi, Y. Fujita, Y. Harada, M. Tagawa, Y. Hara, Hydroxyapatite/poly-L-lactide acid screws have better biocompatibility and femoral burr hole closure than does poly-L-lactide acid alone, J. Biomater. Appl. 28 (2014).

DOI: 10.1177/0885328213487754

Google Scholar

[49] Z. Cai, T. Zhang, L. Di, D.M. Xu, D.H. Xu, D.A. Yang, Morphological and histological analysis on the in vivo degradation of poly (propylene fumarate)/(calcium sulfate/β-tricalcium phosphate), Biomed. Microdevices 13 (2011) 623-31.

DOI: 10.1007/s10544-011-9532-8

Google Scholar

[50] K.S. Katti, D. Verma, D.R. Katti, Materials for joint replacement. In: Revell, P.A. (Ed. ), Joint Replacement Technology. Woodhead Publishing Limited, 2008, p.90.

DOI: 10.1201/9781439833063.ch4

Google Scholar

[51] F. Kjellson, T. Almén, K.E. Tanner, I.D. McCarthy, L. Lidgren, Bone cement X-ray contrast media: a clinically relevant method of measuring their efficacy, J. Biomed. Mater. Res. B Appl. Biomater. 15 (2004) 354-61.

DOI: 10.1002/jbm.b.30060

Google Scholar

[52] G. Furtos, M. Tomoaia-Cotisel, C. Garbo, M. Şenilă, N. Jumate, I. Vida-Simiti, C. Prejmerean, New composite bone cement based on hydroxyapatite and nanosilver, Particul. Sci. Technol. 31 (2013) 392-398.

DOI: 10.1080/02726351.2013.767293

Google Scholar

[53] A. Mocanu, G. Furtos, S. Rapuntean, O. Horovitz, C. Flore, C. Garbo, A. Danisteanu, G. Rapuntean, C. Prejmerean, M. Tomoaia-Cotisel, Synthesis; characterization and antimicrobial effects of composites based on multi-substituted hydroxyapatite and silver nanoparticles, Appl. Surf. Sci. 298 (2014).

DOI: 10.1016/j.apsusc.2014.01.166

Google Scholar

[54] G. Furtos, M. Tomoaia-Cotisel, B. Baldea, C. Prejmerean, Development and characterization of new AR glass fiber reinforced cements with potential medical applications, J. Appl. Polym. Sci. 15 (2013) 1266–1273.

DOI: 10.1002/app.38508

Google Scholar

[55] C.X. Wang, J. Tong, Interfacial strength of novel PMMA/HA/nanoclay bone cement, Biomed. Mater. Eng. 18 (2008) 367–375.

DOI: 10.3233/bme-2008-0553

Google Scholar

[56] D. Rentería-Zamarrón, D.A. Cortés-Hernández, L. Bretado-Aragón, W. Ortega-Lara, Mechanical properties and apatite-forming ability of PMMA bone cements, Mater. Design 30 (2009) 3318–3324.

DOI: 10.1016/j.matdes.2008.11.024

Google Scholar

[57] Y. Zhang, X. Cui, S. Zhao, H. Wang, M.N. Rahaman, Z. Liu, W. Huang, C. Zhang, Evaluation of injectable strontium-containing borate bioactive glass cement with enhanced osteogenic capacity in a critical-sized rabbit femoral condyle defect model, ACS Appl. Mater. Interfaces 7 (2015).

DOI: 10.1021/am507008z

Google Scholar

[58] R.L. Bowen, Dental filling material comprising vinyl silane treated fused silica and a binder consisting of the reaction product of bis phenol and glycidyl acrylate, US Patent 3 (1962).

Google Scholar

[59] K.L. Van Landuyt, J. Snauwaert, J. De Munck, M. Peumans, Y. Yoshida, A. Poitevin, E. Coutinho, K. Suzuki, P. Lambrechts, B. Van Meerbeek, Systematic review of the chemical composition of contemporary dental adhesives, Biomaterials 28 (2007).

DOI: 10.1016/j.biomaterials.2007.04.044

Google Scholar

[60] S.Y. Yang, Y.Z. Piao, S.M. Kim, Y.K. Lee, K.N. Kim, K.M. Kim, Acid neutralizing, mechanical and physical properties of pit and fissure sealants containing melt-derived 45S5 bioactive glass, Dent. Mater. 29 (2013) 1228-35.

DOI: 10.1016/j.dental.2013.09.007

Google Scholar

[61] S. Salehi, F. Gwinner, J.C. Mitchell, C. Pfeifer, J.L. Ferracane, Cytotoxicity of resin composites containing bioactive glass fillers, Dent. Mater. 31 (2015) 195-203.

DOI: 10.1016/j.dental.2014.12.004

Google Scholar

[62] A. Bistol, G. Massazza, E. Verné, A. Massè, D. Deledda, S. Ferraris, M. Miola, F Galetto, M. Crova, Antibiotic-Loaded Cement in Orthopedic Surgery: A Review, SRNOrthod. 2011 (2011)1-8.

DOI: 10.5402/2011/290851

Google Scholar

[63] C.G. Emilson, G. Bergenholtz, Antibacterial activity of dentinal bonding agents, Quintessence Int. 24 (1993) 511-5.

Google Scholar

[64] A. Guida, R.G. Hill, M.R. Towler, S. Eramo, Fluoride release from model glass ionomer cements, J. Mater. Sci. Mater. Med. 13 (2002) 645-9.

Google Scholar

[65] S. Chersoni, A. Bertacci, D.H. Pashley, F.R. Tay, L. Montebugnoli, C. Prati, In vivo effects of fluoride on enamel permeability, Clin. Oral Investig. 15 (2011) 443-9.

DOI: 10.1007/s00784-010-0406-x

Google Scholar

[66] K. Sjögren, How to improve oral fluoride retention? Caries Res. 35 (2001) 14-7.

DOI: 10.1159/000049103

Google Scholar

[67] X. Xu, Y. Wang, S. Liao, Z.T. Wen, Y. Fan, Synthesis and characterization of antibacterial dental monomers and composites, J. Biomed. Mater. Res. B Appl. Biomater. 100 (2012) 1151-62.

DOI: 10.1002/jbm.b.32683

Google Scholar

[68] H.B. Davis, F. Gwinner, J.C. Mitchell, J.L. Ferracane, Ion release from, and fluoride recharge of a composite with a fluoride-containing bioactive glass, Dent. Mater. 30 (2014) 1187-94.

DOI: 10.1016/j.dental.2014.07.012

Google Scholar

[69] X. Chatzistavrou, J.C. Fenno, D. Faulk, S. Badylak, T. Kasuga, A.R. Boccaccini, P. Papagerakis, Fabrication and characterization of bioactive and antibacterial composites for dental applications, Acta Biomater. 10 (2014) 3723-32.

DOI: 10.1016/j.actbio.2014.04.030

Google Scholar

[70] F. Liu, X. Jiang, Q. Zhang, M. Zhu, Strong and bioactive dental resin composite containing poly(Bis-GMA) grafted hydroxyapatite whiskers and silica nanoparticles, Compos. Sci. Technol. 101 (2014) 86-93.

DOI: 10.1016/j.compscitech.2014.07.001

Google Scholar

[71] M.R. Norton, J. Wilson, Dental implants placed in extraction sites implanted with bioactive glass: human histology and clinical outcome, Int. J. Oral Maxillofac. Implants 17 (2002) 249-57.

Google Scholar

[72] K.R. Rust, G.T. Singleton, J. Wilson, P.J. Antonelli, Bioglass middle ear prosthesis: long-term results, Am. J. Otol. 17 (1996) 371-4.

Google Scholar

[73] S. Dogan, H. Günay, G. Leyhausen, W. Geurtsen, Chemical-biological interactions of NaF with three different cell lines and the caries pathogen Streptococcus sobrinus, Clin. Oral Investig. 6 (2002) 92-7.

DOI: 10.1007/s00784-002-0157-4

Google Scholar

[74] S. Hahnel, D.S. Wastl, S. Schneider-Feyrer, F.J. Giessibl, E. Brambilla, G. Cazzaniga, A. Ionescu, Streptococcus mutans biofilm formation and release of fluoride from experimental resin-based composites depending on surface treatment and S-PRG filler particle fraction, J. Adhes. Dent. 16 (2014).

DOI: 10.1007/s10856-014-5372-4

Google Scholar

[75] G. Furtos, V. Cosma, C. Prejmerean, M. Moldovan, M. Brie, A. Colceriu, L. Vezsenyi, L. Silaghi-Dumitrescu, C. Sârbu, Fluoride release from dental resin composites, Mater. Sci. Eng. C 25 (2005) 231–236.

DOI: 10.1016/j.msec.2005.01.016

Google Scholar

[76] A. Wiegand, W. Buchalla, T. Attin, Review on fluoride-releasing restorative materials-fluoride release and uptake characteristics, antibacterial activity and influence on caries formation, Dent. Mater. 23 (2007) 343-62.

DOI: 10.1016/j.dental.2006.01.022

Google Scholar

[77] T. Kokubo, H. Takadama, How useful is SBF in predicting in vivo bone bioactivity?, Biomaterials 27 (2006) 2907–2915.

DOI: 10.1016/j.biomaterials.2006.01.017

Google Scholar

[78] T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi, T. Yamamuro, Solutions able to reproduce in vivo surface-structure change in bioactive glass-ceramic A–W, J. Biomed. Mater. Res. 24 (1990) 721–34.

DOI: 10.1002/jbm.820240607

Google Scholar

[79] M.R. Filgueiras, G.L. Torre, L.L. Hench, Solution effects on the surface reactions of a bioactive glass, J. Biomed. Mater. Res. 27 (1993) 445–53.

DOI: 10.1002/jbm.820270405

Google Scholar

[80] S.B. Cho, K. Nakanishi, T. Kokubo, N. Soga, C. Ohtsuki, T. Nakamura, Apatite formation on silica gel in simulated body fluid: its dependence on structures of silica gels prepared in different media, J. Biomed. Mater. Res. 33 (1996) 145-51.

DOI: 10.1002/(sici)1097-4636(199623)33:3<145::aid-jbm4>3.0.co;2-q

Google Scholar

[81] F. Teng, J. Li, Y. Wu, H. Chen, Q. Zhang, H. Wang, G. Ou, Fabrication and bioactivity evaluation of porous anodised TiO2 films in vitro, Biosci. Trends 8 (2014) 260-5.

DOI: 10.5582/bst.2014.01035

Google Scholar

[82] X. Liu, A. Huang, C. Ding, P.K. Chu, Bioactivity and cytocompatibility of zirconia (ZrO2) films fabricated by cathodic arc deposition, Biomaterials 27 (2006) 3904-3911.

DOI: 10.1016/j.biomaterials.2006.03.007

Google Scholar

[83] R.L. Karlinsey, A.T. Hara, K. Yi, C.W. Duhn, Bioactivity of novel self-assembled crystalline Nb2O5 microstructures in simulated and human salivas, Biomed. Mater. 1 (2006) 16-23.

DOI: 10.1088/1748-6041/1/1/003

Google Scholar

[84] T. Miyazaki, H.M. Kim, T. Kokubo, H. Kato, T. Nakamura, Induction and acceleration of bonelike apatite formation on tantalum oxide gel in simulated body fluid, J. Sol–Gel Sci. Technol. 21 (2001) 83–88.

DOI: 10.4028/www.scientific.net/kem.192-195.43

Google Scholar

[85] P. Li, C. Ohtsuki, T. Kokubo, K. Nakanishi, N. Soga, K. de Groot, The role of hydrated silica, titania, and alumina in inducing apatite on implants, J. Biomed. Mater. Res. 28 (1994) 7-15.

DOI: 10.1002/jbm.820280103

Google Scholar