p.222
p.235
p.247
p.257
p.261
p.276
p.295
p.312
p.328
Biocomposites for Orthopedic and Dental Application
Abstract:
The development of polymer and inorganic filler lead to new biocomposite materials with a wide range of applications in orthopedic and dental application. Biomposites possess an excellent biocompatibility, biodegradability and superior mechanical properties. The inclusion of bioactive filler of hydroxyapatite, wollastonite glass-ceramics and bioactive glass could provide bioactivity of biocomposites. This review summarizes the recent work on the development of biocomposites containing biopolymers with different bioactive particles suitable for use in bone defects/bone regeneration and dental application.
Info:
Periodical:
Pages:
261-275
Citation:
Online since:
January 2016
Price:
Сopyright:
© 2016 Trans Tech Publications Ltd. All Rights Reserved
Citation:
* - Corresponding Author
[1] D.F. Williams, Definitions in biomaterials, Proceedings of a Consensus Conference of the European Society for Biomaterials, Chester, England, March 3–5, 1986, 4, Elsevier, NewYork, (1987).
[2] D.F. Williams, The Williams Dictionary of Biomaterials, Liverpool University Press, Liverpool, United Kingdom (1999).
[3] K.A. Athanasiou, C. Zhu, D.R. Lanctot, C.M. Agrawal, X. Wang, Fundamentals of biomechanics in tissue engineering of bone, Tissue Eng. 6 (2000) 361-81.
[4] F. Bronner, M.C. Farach-Carson, A. G. Mikos, Engineering of Functional Skeletal Tissues (Topics in Bone Biology), Springer, (2006).
[5] H.J. Donahue, Q. Chen, C.R. Jacobs, M.M. Saunders, C.E. Yellowley, Bone cells and mechanotransduction. In: Rosier R, Evans C, eds. Molecular Biology in Orthopaedics. American Academy of Orthopaedic Surgeons, Scottsdate, (2001).
[6] M. Levine, Topics in Dental Biochemistry, Springer, (2011).
[7] K.M. Hargreaves, L.H. Berman, Cohen's Pathways of the Pulp Expert Consult, 10th Edition, Mosby, (2011).
[8] S.W. Shalaby, U. Salz, Polymers for Dental and Orthopedic Applications, 1st edition, CRC Press; (2006).
[9] B. Li, B. Guo, H. Fan, X. Zhang, Preparation of nano-hydroxyapatite particles with different morphology and their response to highly malignant melanoma cells in vitro, Appl. Surf. Sci. 255 (2008) 357-360.
[10] W.I. Abdel-Fattah, T.A. Elkhooly, Nano-beta-tricalcium phosphates synthesis and biodegradation: 2. Biodegradation and apatite layer formation on nano-beta-TCP synthesized via microwave treatment, Biomed Mater. 5 (2010) 035015.
[11] Y. Yoshimine, A. Akamine, M. Mukai, K. Maeda, M. Matsukura, Y. Kimura, T. Makishima, Biocompatibility of tetracalcium phosphate cement when used as a bone substitute, Biomaterials 14 (1993) 403-6.
[12] S.A. Saadaldin, A.S. Rizkalla, Synthesis and characterization of wollastonite glass-ceramics for dental implant applications, Dent Mater. 30 (2014) 364-71.
[13] H.H. Beherei, K.R. Mohamed, G.T. El-Bassyouni, Fabrication and characterization of bioactive glass (45S5)/titania biocomposites, Ceramics Int. 35 (2009) 1991–(1997).
[14] R.Z. LeGeros, Calcium Phosphates in Oral Biology and Medicine; Karger: Basel, Switzerland, (1991).
[15] R.W. Arcís, A. López-Macipe, M. Toledano, E. Osorio, R. Rodríguez-Clemente, J. Murtra, M.A. Fanovich, C.D. Pascual, Mechanical properties of visible light-cured resins reinforced with hydroxyapatite for dental restoration, Dent Mater. 18 (2002).
[16] R. Labella, M. Braden, S. Deb, Novel hydroxyapatite-based dental composites, Biomaterials 15 (1994) 1197-200.
[17] C Domingo, RW Arcís, E Osorio, R Osorio, MA Fanovich, R Rodríguez-Clemente, M Toledano, Hydrolytic stability of experimental hydroxyapatite-filled dental composite materials, Dent Mater. 19 (2003) 478-86.
[18] C. Santos, Z.B. Luklinska, R.L. Clarke, K.W. Davy, Hydroxyapatite as a filler for dental composite materials: mechanical properties and in vitro bioactivity of composites, J. Mater. Sci. Mater. Med. 12 (2001) 565-73.
[19] A. Sionkowska, J. Kozłowska, Properties and modification of porous 3-D collagen/hydroxyapatite composites, Int. J. Biol. Macromol. 52 (2013) 250-9.
[20] G. Tripathi, B. Basu, A porous hydroxyapatite scaffold for bone tissue engineering: Physico-mechanical and biological evaluations, Ceramics Int. 38 (2012) 341-349.
[21] S.A. Salman, K. Kuroda, M. Okido, Preparation and characterization of hydroxyapatite coating on AZ31 Mg Alloy for implant applications, Bioinorg. Chem. Appl. 2013 (2013) 1-6.
DOI: 10.1155/2013/175756
[22] N. Roveri, E. Foresti, M. Lelli, I.G. Lesci, Recent advancements in preventing teeth health hazard: the daily use of hydroxyapatite instead of fluoride, Recent Pat. Biomed. Eng. 2 (2009) 197-215.
[23] T.J. Webster, R.W. Siegel, R. Bizios, Enhanced functions of osteoblasts on nanophase ceramics, Biomaterials 21 (2000) 1803–10.
[24] S. Manafi, M.R. Rahimipou, Synthesis of nanocrystalline hydroxyapatite nanorods via hydrothermal conditions, Chem. Eng. Technol. 34 (2011) 972–976.
[25] G.J. Poinern, R. Brundavanam, X.T. Le, S. Djordjevic, M. Prokic, D. Fawcett, Thermal and ultrasonic influence in the formation of nanometer scale hydroxyapatite bio-ceramic, Int. J. Nanomed. 6 (2011) 2083-95.
DOI: 10.2147/ijn.s24790
[26] F. Bakan, O. Laçin, H. Sarac, A novel low temperature sol–gel synthesis process for thermally stable nano crystalline hydroxyapatite, Powder Technol. 233 (2013) 295–302.
[27] J.R. Jones, Review of bioactive glass: from Hench to hybrids, Acta Biomater. 9 (2013) 4457-86.
[28] H. Zhu, C. Hu, F. Zhang, X. Feng, J. Li, T. Liu, J. Chen, J. Zhang, Preparation and antibacterial property of silver-containing mesoporous 58S bioactive glass, Mater. Sci. Eng. C Mater. Biol. Appl. 42 (2014) 22-30.
[29] M.N. Rahaman, D.E. Day, B.S. Bal, Q. Fu, S.B. Jung, L.F. Bonewald, A.P. Tomsia, Bioactive glass in tissue engineering, Acta Biomater. 7 (2011) 2355-73.
[30] A. Hoppe, N.S. Güldal, A.R. Boccaccini, A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics, Biomaterials 32 (2011) 2757-74.
[31] A.A. Gorustovich, J.M. López, M.B. Guglielmotti, R.L. Cabrini, Biological performance of boron-modified bioactive glass particles implanted in rat tibia bone marrow, Biomed. Mater. 1 (2006) 100-5.
[32] C. Wu, Y. Zhou, M. Xu, P. Han, L. Chen, J. Chang, Y. Xiao, Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity, Biomaterials 34 (2013).
[33] S. Ramakrishna, G.V. Kumar, A.W. Batchelor, J. Mayer, An introduction to biocomposites, Edition: 1st, World Scientific Pub Co Inc., (2004).
[34] G. Furtos, B. Baldea, L. Silaghi-Dumitrescu, M. Moldovan, C. Prejmerean, L. Nica, Influence of the inorganic filler content on the radiopacity of several dental resin cements, Dent. Mater. J. 31(2) (2012) 266-72.
DOI: 10.4012/dmj.2011-225
[35] G. Furtos, L. Silaghi-Dumitrescu, M. Moldovan, B. Baldea, R. Trusca, C. Prejmerean, Influence of filler/reinforcing agent and post-curing on the flexural properties of woven and unidirectional glass fiber reinforced composites, J. Mater. Sci. 47 (2012).
[36] G. Furtos, M. Tomoaia-Cotisel, C. Prejmerean, Resin composites reinforced by glass fibers with potential biomedical structure and mechanical properties, Particul. Sci. Technol. 31 (2013) 332-339.
[37] A. Sugino, T. Miyazaki, G. Kawachi, K. Kikuta, C. Ohtsuki, Relationship between apatite-forming ability and mechanical properties of bioactive PMMA-based bone cement modified with calcium salts and alkoxysilane, J. Mater. Sci. Mater. Med. 19 (2008).
[38] M.J. Dalby, L. Di Silvio, E.J. Harper, W. Bonfield, Increasing hydroxyapatite incorporation into poly(methylmethacrylate) cement increases osteoblast adhesion and response, Biomaterials 23 (2002) 569-76.
[39] K. Serbetçi, F. Korkusuz, N. Hasirci, Mechanical and thermal properties of hydroxyapatite-impregnated bone cement, Turk. J. Med. Sci. 30 (2000) 543–549.
[40] S.Y. Kwon, Y.S. Kim, Y.K. Woo, S.S. Kim, J.B. Park, Hydroxyapatite impregnated bone cement: in vitro and in vivo studies, Biomed. Mater. Eng. 7 (1997) 129-40.
[41] R.L. Reis, Polymer Based Systems on Tissue Engineering, Replacement and Regeneration (Reis RL and Cohn D, eds). Dordrecht: Kluwer Academic Publishers, (2002).
[42] C. John, Middleton, Arthur J. Tipton, Synthetic biodegradable polymers as orthopedic devices, Biomaterials 21 (2000) 2335-2346.
[43] Athanasiou KA, Agrawal CE, Barber FA, Burkhart SS. Orthopaedic applications for PLA-PGA biodegradable polymers, J. Arthrosc. Relat. Surg. 14 (1998) 726-737.
[44] C.T. Kao, T.H. Huang, Y.J. Chen, C.J. Hung, C.C. Lin, M.Y. Shie, Using calcium silicate to regulate the physicochemical and biological properties when using β-tricalcium phosphate as bone cement, Mater. Sci. Eng. C Mater. Biol. Appl. 1 (2014).
[45] D. Loca, M. Sokolova, J. Locs, A. Smirnova, Z. Irbe, Calcium phosphate bone cements for local vancomycin delivery, Mater. Sci. Eng. C 49 (2015) 106-113.
[46] N. Ahola, M. Veiranto, J. Rich, A. Efimov, M. Hannula, J. Seppälä, M. Kellomäki, Hydrolytic degradation of composites of poly(L-lactide-co-epsilon-caprolactone) 70/30 and β-tricalcium phosphate, J. Biomater. Appl. 28 (2013) 529-43.
[47] K.U. Lewandrowski, S.P. Bondre, M. Shea, C.M. Untch, W.C. Hayes, D.D. Hile, D.L. Wise, D.J. Trantolo, Composite resorbable polymer/hydroxylapatite composite screws for fixation of osteochondral osteotomies, Biomed. Mater. Eng. 12 (2002) 423-38.
[48] H. Akagi, M. Iwata, T. Ichinohe, H. Amimoto, Y. Hayashi, N. Kannno, H. Ochi, Y. Fujita, Y. Harada, M. Tagawa, Y. Hara, Hydroxyapatite/poly-L-lactide acid screws have better biocompatibility and femoral burr hole closure than does poly-L-lactide acid alone, J. Biomater. Appl. 28 (2014).
[49] Z. Cai, T. Zhang, L. Di, D.M. Xu, D.H. Xu, D.A. Yang, Morphological and histological analysis on the in vivo degradation of poly (propylene fumarate)/(calcium sulfate/β-tricalcium phosphate), Biomed. Microdevices 13 (2011) 623-31.
[50] K.S. Katti, D. Verma, D.R. Katti, Materials for joint replacement. In: Revell, P.A. (Ed. ), Joint Replacement Technology. Woodhead Publishing Limited, 2008, p.90.
[51] F. Kjellson, T. Almén, K.E. Tanner, I.D. McCarthy, L. Lidgren, Bone cement X-ray contrast media: a clinically relevant method of measuring their efficacy, J. Biomed. Mater. Res. B Appl. Biomater. 15 (2004) 354-61.
DOI: 10.1002/jbm.b.30060
[52] G. Furtos, M. Tomoaia-Cotisel, C. Garbo, M. Şenilă, N. Jumate, I. Vida-Simiti, C. Prejmerean, New composite bone cement based on hydroxyapatite and nanosilver, Particul. Sci. Technol. 31 (2013) 392-398.
[53] A. Mocanu, G. Furtos, S. Rapuntean, O. Horovitz, C. Flore, C. Garbo, A. Danisteanu, G. Rapuntean, C. Prejmerean, M. Tomoaia-Cotisel, Synthesis; characterization and antimicrobial effects of composites based on multi-substituted hydroxyapatite and silver nanoparticles, Appl. Surf. Sci. 298 (2014).
[54] G. Furtos, M. Tomoaia-Cotisel, B. Baldea, C. Prejmerean, Development and characterization of new AR glass fiber reinforced cements with potential medical applications, J. Appl. Polym. Sci. 15 (2013) 1266–1273.
DOI: 10.1002/app.38508
[55] C.X. Wang, J. Tong, Interfacial strength of novel PMMA/HA/nanoclay bone cement, Biomed. Mater. Eng. 18 (2008) 367–375.
[56] D. Rentería-Zamarrón, D.A. Cortés-Hernández, L. Bretado-Aragón, W. Ortega-Lara, Mechanical properties and apatite-forming ability of PMMA bone cements, Mater. Design 30 (2009) 3318–3324.
[57] Y. Zhang, X. Cui, S. Zhao, H. Wang, M.N. Rahaman, Z. Liu, W. Huang, C. Zhang, Evaluation of injectable strontium-containing borate bioactive glass cement with enhanced osteogenic capacity in a critical-sized rabbit femoral condyle defect model, ACS Appl. Mater. Interfaces 7 (2015).
DOI: 10.1021/am507008z
[58] R.L. Bowen, Dental filling material comprising vinyl silane treated fused silica and a binder consisting of the reaction product of bis phenol and glycidyl acrylate, US Patent 3 (1962).
[59] K.L. Van Landuyt, J. Snauwaert, J. De Munck, M. Peumans, Y. Yoshida, A. Poitevin, E. Coutinho, K. Suzuki, P. Lambrechts, B. Van Meerbeek, Systematic review of the chemical composition of contemporary dental adhesives, Biomaterials 28 (2007).
[60] S.Y. Yang, Y.Z. Piao, S.M. Kim, Y.K. Lee, K.N. Kim, K.M. Kim, Acid neutralizing, mechanical and physical properties of pit and fissure sealants containing melt-derived 45S5 bioactive glass, Dent. Mater. 29 (2013) 1228-35.
[61] S. Salehi, F. Gwinner, J.C. Mitchell, C. Pfeifer, J.L. Ferracane, Cytotoxicity of resin composites containing bioactive glass fillers, Dent. Mater. 31 (2015) 195-203.
[62] A. Bistol, G. Massazza, E. Verné, A. Massè, D. Deledda, S. Ferraris, M. Miola, F Galetto, M. Crova, Antibiotic-Loaded Cement in Orthopedic Surgery: A Review, SRNOrthod. 2011 (2011)1-8.
DOI: 10.5402/2011/290851
[63] C.G. Emilson, G. Bergenholtz, Antibacterial activity of dentinal bonding agents, Quintessence Int. 24 (1993) 511-5.
[64] A. Guida, R.G. Hill, M.R. Towler, S. Eramo, Fluoride release from model glass ionomer cements, J. Mater. Sci. Mater. Med. 13 (2002) 645-9.
[65] S. Chersoni, A. Bertacci, D.H. Pashley, F.R. Tay, L. Montebugnoli, C. Prati, In vivo effects of fluoride on enamel permeability, Clin. Oral Investig. 15 (2011) 443-9.
[66] K. Sjögren, How to improve oral fluoride retention? Caries Res. 35 (2001) 14-7.
DOI: 10.1159/000049103
[67] X. Xu, Y. Wang, S. Liao, Z.T. Wen, Y. Fan, Synthesis and characterization of antibacterial dental monomers and composites, J. Biomed. Mater. Res. B Appl. Biomater. 100 (2012) 1151-62.
DOI: 10.1002/jbm.b.32683
[68] H.B. Davis, F. Gwinner, J.C. Mitchell, J.L. Ferracane, Ion release from, and fluoride recharge of a composite with a fluoride-containing bioactive glass, Dent. Mater. 30 (2014) 1187-94.
[69] X. Chatzistavrou, J.C. Fenno, D. Faulk, S. Badylak, T. Kasuga, A.R. Boccaccini, P. Papagerakis, Fabrication and characterization of bioactive and antibacterial composites for dental applications, Acta Biomater. 10 (2014) 3723-32.
[70] F. Liu, X. Jiang, Q. Zhang, M. Zhu, Strong and bioactive dental resin composite containing poly(Bis-GMA) grafted hydroxyapatite whiskers and silica nanoparticles, Compos. Sci. Technol. 101 (2014) 86-93.
[71] M.R. Norton, J. Wilson, Dental implants placed in extraction sites implanted with bioactive glass: human histology and clinical outcome, Int. J. Oral Maxillofac. Implants 17 (2002) 249-57.
[72] K.R. Rust, G.T. Singleton, J. Wilson, P.J. Antonelli, Bioglass middle ear prosthesis: long-term results, Am. J. Otol. 17 (1996) 371-4.
[73] S. Dogan, H. Günay, G. Leyhausen, W. Geurtsen, Chemical-biological interactions of NaF with three different cell lines and the caries pathogen Streptococcus sobrinus, Clin. Oral Investig. 6 (2002) 92-7.
[74] S. Hahnel, D.S. Wastl, S. Schneider-Feyrer, F.J. Giessibl, E. Brambilla, G. Cazzaniga, A. Ionescu, Streptococcus mutans biofilm formation and release of fluoride from experimental resin-based composites depending on surface treatment and S-PRG filler particle fraction, J. Adhes. Dent. 16 (2014).
[75] G. Furtos, V. Cosma, C. Prejmerean, M. Moldovan, M. Brie, A. Colceriu, L. Vezsenyi, L. Silaghi-Dumitrescu, C. Sârbu, Fluoride release from dental resin composites, Mater. Sci. Eng. C 25 (2005) 231–236.
[76] A. Wiegand, W. Buchalla, T. Attin, Review on fluoride-releasing restorative materials-fluoride release and uptake characteristics, antibacterial activity and influence on caries formation, Dent. Mater. 23 (2007) 343-62.
[77] T. Kokubo, H. Takadama, How useful is SBF in predicting in vivo bone bioactivity?, Biomaterials 27 (2006) 2907–2915.
[78] T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi, T. Yamamuro, Solutions able to reproduce in vivo surface-structure change in bioactive glass-ceramic A–W, J. Biomed. Mater. Res. 24 (1990) 721–34.
[79] M.R. Filgueiras, G.L. Torre, L.L. Hench, Solution effects on the surface reactions of a bioactive glass, J. Biomed. Mater. Res. 27 (1993) 445–53.
[80] S.B. Cho, K. Nakanishi, T. Kokubo, N. Soga, C. Ohtsuki, T. Nakamura, Apatite formation on silica gel in simulated body fluid: its dependence on structures of silica gels prepared in different media, J. Biomed. Mater. Res. 33 (1996) 145-51.
DOI: 10.1002/(sici)1097-4636(199623)33:3<145::aid-jbm4>3.0.co;2-q
[81] F. Teng, J. Li, Y. Wu, H. Chen, Q. Zhang, H. Wang, G. Ou, Fabrication and bioactivity evaluation of porous anodised TiO2 films in vitro, Biosci. Trends 8 (2014) 260-5.
[82] X. Liu, A. Huang, C. Ding, P.K. Chu, Bioactivity and cytocompatibility of zirconia (ZrO2) films fabricated by cathodic arc deposition, Biomaterials 27 (2006) 3904-3911.
[83] R.L. Karlinsey, A.T. Hara, K. Yi, C.W. Duhn, Bioactivity of novel self-assembled crystalline Nb2O5 microstructures in simulated and human salivas, Biomed. Mater. 1 (2006) 16-23.
[84] T. Miyazaki, H.M. Kim, T. Kokubo, H. Kato, T. Nakamura, Induction and acceleration of bonelike apatite formation on tantalum oxide gel in simulated body fluid, J. Sol–Gel Sci. Technol. 21 (2001) 83–88.
[85] P. Li, C. Ohtsuki, T. Kokubo, K. Nakanishi, N. Soga, K. de Groot, The role of hydrated silica, titania, and alumina in inducing apatite on implants, J. Biomed. Mater. Res. 28 (1994) 7-15.