[1]
A. Boskey. Biomineralization: an overview. Connective Tissue Research, 44 (suppl. 1) (2003) 5-9.
Google Scholar
[2]
C. Cunha, S. Panseri, M. Sandri, M. Marcacci, A. Tampieri. Inspired by nature. Materials Today. 15, Issue 5, (2012) 223.
DOI: 10.1016/s1369-7021(12)70098-6
Google Scholar
[3]
S.M. Peltola, D.W. Grijpma, F.P.W. Melchels, M. Kellomäki. A review of rapid prototyping techniques for tissue engineering purposes. Annals of Medicine 40 (4) (2008) 268‐280.
DOI: 10.1080/07853890701881788
Google Scholar
[4]
L. Ciocca, D. Donati, I.G. Lesci, B. Dozza, S. Duchi, O. Mezini, A. Spadari, N. Romagnoli R. Scotti, N. Roveri. Custom-made novel biomimetic composite scaffolds for the bone regenerative medicine. Materials Letters 136 (2014) 393–396.
DOI: 10.1016/j.matlet.2014.08.097
Google Scholar
[5]
C.H. Rundle, H. Wang, H. Yu, R.B. Chadwick, E.I. Davis, J.E. Wergedal, K.H. Lau, S. Mohan, J.T. Ryaby and D.J. Baylink. Microarray analysis of gene expression during the inflammation and endochondral bone formation stages of rat femur fracture repair. Bone 38 (2006).
DOI: 10.1016/j.bone.2005.09.015
Google Scholar
[6]
L. Ciocca, I.G. Lesci, D. Donati, R. Scotti. Custom made innovative composite scaffold for bone regenerative medicine. Dental Materials. 30, Supplement 1 (2014) 136-137.
DOI: 10.1016/j.dental.2014.08.280
Google Scholar
[7]
S. Yu, Z. Yu, G. Wang, J. Han, X. Ma, M.S. Dargusch. Biocompatibility and osteoconduction of active porous calcium-phosphate films on a novel Ti-3Zr-2Sn-3Mo-25Nb biomedical alloy. Colloids Surf B Biointerfaces. 85(2) (2011) 103-15.
DOI: 10.1016/j.colsurfb.2011.02.025
Google Scholar
[8]
N. Roveri, E. Foresti, M. Lelli, I. G. Lesci, M. Marchetti. Microscopic investigations of Synthetic Biomimetic HydroxyapatiteMicroscopy: Science, Technology, Applications and Education A. Méndez-Vilas and J. Díaz (Eds. ) 3 (2010).
Google Scholar
[9]
N. Roveri, E. Foresti, M. Lelli, I.G. Lesci. Recent Advancements in Preventing Teeth Health Hazard: The Daily Use of Hydroxyapatite Instead of Fluoride., Recent Patents On Biomedical Engineering, 2 (2009) 197-215.
DOI: 10.2174/1874764710902030197
Google Scholar
[10]
M. Iafisco, P. Sabatino, I.G. Lesci, M. Prat, L. Rimondini, N. Roveri. Conformational modifications of serum albumins adsorbed on different kinds of biomimetic hydroxyapatite nanocrystals Colloids and Surfaces B: Biointerfaces. 81, Issue 1, (2010).
DOI: 10.1016/j.colsurfb.2010.07.022
Google Scholar
[11]
S.H. Oh, J.H. Lee. Hydrophilization of synthetic biodegradable polymer scaffolds for improved cell/tissue compatibility. Biomedical Materials; 8 (2013) 014101.
DOI: 10.1088/1748-6041/8/1/014101
Google Scholar
[12]
S. Wu, X. Liu, K.W.K. Yeung, C. Liu, X. Yang. Biomimetic porous scaffolds for bone tissue engineering. Materials Science and Engineering: R: Reports, 80, (2014) 1-36.
DOI: 10.1016/j.mser.2014.04.001
Google Scholar
[13]
V. Guarino, M.G. Raucci, A. Ronca, V. Cirillo, L. Ambrosio. Multifunctional scaffolds for bone regeneration. Bone Substitute Biomaterials, 5 (19) (2014) 95-117.
DOI: 10.1533/9780857099037.2.95
Google Scholar
[14]
L. Ciocca, D. Donati, S. Ragazzini, B. Dozza, F. Rossi, M. Fantini, A. Spadari, N. Romagnoli, E. Landi, A. Tampieri, A. Piattelli, G. Iezzi, R. Scotti. Mesenchymal stem cells and platelet gel improve bone deposition within CAD-CAM custom-made ceramic HA scaffolds for condyle substitution. Biomed Res Int. 2013; 2013: 549762. doi: 10. 1155/2013/549762. Epub 2013 Sep 1.
DOI: 10.1155/2013/549762
Google Scholar
[15]
L. Ciocca, D. Donati, M. Fantini, E. Landi, A. Piattelli, G. Iezzi, A. Tampieri, A. Spadari, N. Romagnoli, R. Scotti. CAD-CAM-generated hydroxyapatite scaffold to replace the mandibular condyle in sheep: preliminary results. J Biomater Appl. 28(2) (2013).
DOI: 10.1177/0885328212443296
Google Scholar
[16]
R. Kontio. Update on mandibular reconstruction: computeraided design, imaging, stem cells and future applications, Curr Opin Otolaryngol Head Neck Surg, 22 (2014) 307–315.
DOI: 10.1097/moo.0000000000000065
Google Scholar
[17]
T.B. Sercombe, X. Xu, V.J. Challis, R. Green, S. Sue, Z. Zhang, P.D. Lee. Failure modes in high strength and stiffness to weight scaffolds produced by Selective Laser Melting. Materials & Design. 67 ( 2015) 501–508.
DOI: 10.1016/j.matdes.2014.10.063
Google Scholar
[18]
P.X. Ma, J. Elisseeff. Scaffolding in tissue engineering Boca Raton(FL): CRC Press (2006), p.656 p.
Google Scholar
[19]
H. Dietmar. Scaffolds in tissue engineering bone and cartilage Biomaterials, 21 (24) (2000). 2529–2543.
DOI: 10.1016/s0142-9612(00)00121-6
Google Scholar
[20]
T.B. Tseng, A. Chilukuri, S.C. Park, Y.J. Kwon. Automated quality characterization of 3D printed bone scaffolds. Journal of Computational Design and Engineering, 1, Issue 3, (2014) 194-201.
DOI: 10.7315/jcde.2014.019
Google Scholar
[21]
I. Zein, D.W. Hutmacher, K.C. Tan, S.H. Teoh. Fused deposition modeling of novel scaffold archtectures for tissue engineering applications Biomaterials, 23 (4) (2002) 1169–1185.
DOI: 10.1016/s0142-9612(01)00232-0
Google Scholar
[22]
M. Vert, M.S. Li, G. Spenlehauer, P. Guerin. Bioresorbability and biocompatibility of aliphatic polyesters. J Mater Sci; 3 (1992) 432-46.
DOI: 10.1007/bf00701240
Google Scholar
[23]
C. Carvalho, et al. Fabrication of soft and hard biocompatible scaffolds using 3D Bioplotting. Virtual Modelling and Rapid Manufacturing. Advanced Research in Virtual and Rapid Prototyping. London, England: Taylor & Francis Group (2005) 97-102.
Google Scholar
[24]
M. Rücker , M.W. Laschke , D. Junker , C. Carvalho , A. Schramm , R. Mülhaupt , N.C. Gellrich , M.D. Menger. Angiogenic and inflammatory response to biodegradable scaffolds in dorsal skinfold chambers of mice. Biomaterials 27. 29 (2006).
DOI: 10.1016/j.biomaterials.2006.05.033
Google Scholar