Synthetic Biomimetic HA Composite Scaffolds for the Bone Regenerative Medicine Using CAD-CAM Technology

Article Preview

Abstract:

The study of nanocrystalline calcium phosphate physical-chemical characteristics and, thereafter, the possibility to imitate bone mineral for the development of new advanced biomaterials is constantly growing. The availability to use synthetic biomimetic hydroxylapatites (HA), since they are the most important inorganic constituents of hard tissues in vertebrates, represents a great turning point in bone tissue engineering because of their chemical similarity to the biological mineral component. The ability to control the architecture and strength of a bone tissue engineering scaffold is critical to achieve a harmony between the scaffold and the host tissue. The scaffold attempts to mimic the function of the natural extracellular matrix, providing a temporary template for the growth of target tissues. Scaffolds should have suitable architecture and strength to serve their intended function. Rapid prototyping (RP) technique is applied to tissue engineering to satisfy this need and to create a scaffold with fully interconnected pore structure directly from the scanned and digitized image of the defect site. In this study, we developed a biomimetic mineralized collagen/Polycaprolactone composite by self-assembling process of collagen fibers and nucleation of a nanostructured HA mimicking the natural bone. This new solution provides a hybrid material, based on natural components of bone (collagen and HA) and the support of the widely-tested PCL (polycaprolactone) giving the scaffolds ideal characteristics such as resorption, biocompatibility and 3-D printability. CAD design of the microstructure and bioprinting fulfills the need to finely control the scaffold’s shape to best fit the anatomical defect, the possibility of customization and the ability to perfectly control spatial distribution of pores and their morphology. The results allowed the conclusion that these scaffolds are biocompatible and allow the colonization and proliferation of MSC (mesenchymal stem cell). The in vivo results confirm the scaffold’s biocompatibility and its composition and structure create the basis for bone tissue regeneration.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

235-246

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Boskey. Biomineralization: an overview. Connective Tissue Research, 44 (suppl. 1) (2003) 5-9.

Google Scholar

[2] C. Cunha, S. Panseri, M. Sandri, M. Marcacci, A. Tampieri. Inspired by nature. Materials Today. 15, Issue 5, (2012) 223.

DOI: 10.1016/s1369-7021(12)70098-6

Google Scholar

[3] S.M. Peltola, D.W. Grijpma, F.P.W. Melchels, M. Kellomäki. A review of rapid prototyping techniques for tissue engineering purposes. Annals of Medicine 40 (4) (2008) 268‐280.

DOI: 10.1080/07853890701881788

Google Scholar

[4] L. Ciocca, D. Donati, I.G. Lesci, B. Dozza, S. Duchi, O. Mezini, A. Spadari, N. Romagnoli R. Scotti, N. Roveri. Custom-made novel biomimetic composite scaffolds for the bone regenerative medicine. Materials Letters 136 (2014) 393–396.

DOI: 10.1016/j.matlet.2014.08.097

Google Scholar

[5] C.H. Rundle, H. Wang, H. Yu, R.B. Chadwick, E.I. Davis, J.E. Wergedal, K.H. Lau, S. Mohan, J.T. Ryaby and D.J. Baylink. Microarray analysis of gene expression during the inflammation and endochondral bone formation stages of rat femur fracture repair. Bone 38 (2006).

DOI: 10.1016/j.bone.2005.09.015

Google Scholar

[6] L. Ciocca, I.G. Lesci, D. Donati, R. Scotti. Custom made innovative composite scaffold for bone regenerative medicine. Dental Materials. 30, Supplement 1 (2014) 136-137.

DOI: 10.1016/j.dental.2014.08.280

Google Scholar

[7] S. Yu, Z. Yu, G. Wang, J. Han, X. Ma, M.S. Dargusch. Biocompatibility and osteoconduction of active porous calcium-phosphate films on a novel Ti-3Zr-2Sn-3Mo-25Nb biomedical alloy. Colloids Surf B Biointerfaces. 85(2) (2011) 103-15.

DOI: 10.1016/j.colsurfb.2011.02.025

Google Scholar

[8] N. Roveri, E. Foresti, M. Lelli, I. G. Lesci, M. Marchetti. Microscopic investigations of Synthetic Biomimetic HydroxyapatiteMicroscopy: Science, Technology, Applications and Education A. Méndez-Vilas and J. Díaz (Eds. ) 3 (2010).

Google Scholar

[9] N. Roveri, E. Foresti, M. Lelli, I.G. Lesci. Recent Advancements in Preventing Teeth Health Hazard: The Daily Use of Hydroxyapatite Instead of Fluoride., Recent Patents On Biomedical Engineering, 2 (2009) 197-215.

DOI: 10.2174/1874764710902030197

Google Scholar

[10] M. Iafisco, P. Sabatino, I.G. Lesci, M. Prat, L. Rimondini, N. Roveri. Conformational modifications of serum albumins adsorbed on different kinds of biomimetic hydroxyapatite nanocrystals Colloids and Surfaces B: Biointerfaces. 81, Issue 1, (2010).

DOI: 10.1016/j.colsurfb.2010.07.022

Google Scholar

[11] S.H. Oh, J.H. Lee. Hydrophilization of synthetic biodegradable polymer scaffolds for improved cell/tissue compatibility. Biomedical Materials; 8 (2013) 014101.

DOI: 10.1088/1748-6041/8/1/014101

Google Scholar

[12] S. Wu, X. Liu, K.W.K. Yeung, C. Liu, X. Yang. Biomimetic porous scaffolds for bone tissue engineering. Materials Science and Engineering: R: Reports, 80, (2014) 1-36.

DOI: 10.1016/j.mser.2014.04.001

Google Scholar

[13] V. Guarino, M.G. Raucci, A. Ronca, V. Cirillo, L. Ambrosio. Multifunctional scaffolds for bone regeneration. Bone Substitute Biomaterials, 5 (19) (2014) 95-117.

DOI: 10.1533/9780857099037.2.95

Google Scholar

[14] L. Ciocca, D. Donati, S. Ragazzini, B. Dozza, F. Rossi, M. Fantini, A. Spadari, N. Romagnoli, E. Landi, A. Tampieri, A. Piattelli, G. Iezzi, R. Scotti. Mesenchymal stem cells and platelet gel improve bone deposition within CAD-CAM custom-made ceramic HA scaffolds for condyle substitution. Biomed Res Int. 2013; 2013: 549762. doi: 10. 1155/2013/549762. Epub 2013 Sep 1.

DOI: 10.1155/2013/549762

Google Scholar

[15] L. Ciocca, D. Donati, M. Fantini, E. Landi, A. Piattelli, G. Iezzi, A. Tampieri, A. Spadari, N. Romagnoli, R. Scotti. CAD-CAM-generated hydroxyapatite scaffold to replace the mandibular condyle in sheep: preliminary results. J Biomater Appl. 28(2) (2013).

DOI: 10.1177/0885328212443296

Google Scholar

[16] R. Kontio. Update on mandibular reconstruction: computeraided design, imaging, stem cells and future applications, Curr Opin Otolaryngol Head Neck Surg, 22 (2014) 307–315.

DOI: 10.1097/moo.0000000000000065

Google Scholar

[17] T.B. Sercombe, X. Xu, V.J. Challis, R. Green, S. Sue, Z. Zhang, P.D. Lee. Failure modes in high strength and stiffness to weight scaffolds produced by Selective Laser Melting. Materials & Design. 67 ( 2015) 501–508.

DOI: 10.1016/j.matdes.2014.10.063

Google Scholar

[18] P.X. Ma, J. Elisseeff. Scaffolding in tissue engineering Boca Raton(FL): CRC Press (2006), p.656 p.

Google Scholar

[19] H. Dietmar. Scaffolds in tissue engineering bone and cartilage Biomaterials, 21 (24) (2000). 2529–2543.

DOI: 10.1016/s0142-9612(00)00121-6

Google Scholar

[20] T.B. Tseng, A. Chilukuri, S.C. Park, Y.J. Kwon. Automated quality characterization of 3D printed bone scaffolds. Journal of Computational Design and Engineering, 1, Issue 3, (2014) 194-201.

DOI: 10.7315/jcde.2014.019

Google Scholar

[21] I. Zein, D.W. Hutmacher, K.C. Tan, S.H. Teoh. Fused deposition modeling of novel scaffold archtectures for tissue engineering applications Biomaterials, 23 (4) (2002) 1169–1185.

DOI: 10.1016/s0142-9612(01)00232-0

Google Scholar

[22] M. Vert, M.S. Li, G. Spenlehauer, P. Guerin. Bioresorbability and biocompatibility of aliphatic polyesters. J Mater Sci; 3 (1992) 432-46.

DOI: 10.1007/bf00701240

Google Scholar

[23] C. Carvalho, et al. Fabrication of soft and hard biocompatible scaffolds using 3D Bioplotting. Virtual Modelling and Rapid Manufacturing. Advanced Research in Virtual and Rapid Prototyping. London, England: Taylor & Francis Group (2005) 97-102.

Google Scholar

[24] M. Rücker , M.W. Laschke , D. Junker , C. Carvalho , A. Schramm , R. Mülhaupt , N.C. Gellrich , M.D. Menger. Angiogenic and inflammatory response to biodegradable scaffolds in dorsal skinfold chambers of mice. Biomaterials 27. 29 (2006).

DOI: 10.1016/j.biomaterials.2006.05.033

Google Scholar