Sulphur-Containing Compounds as a Response in Sea Urchins Exposed to Alkylated Silicon Nanocrystals and SiO2-Coated Iron Oxide Nanoparticles

Article Preview

Abstract:

We report the effects of exposure to alkylated silicon nanocrystals (‘alkyl-SiNCs’ at concentration ~ 7.2 mg/L) and -Fe2O3 nanoparticles coated with ultra-thin silica (‘SiO2-coated IONPs’ at concentration ~ 150 mg/L) on sea urchins Paracentrotus lividus and Arbacia lixula, respectively, studied with X-ray fluorescence (XRF) and Fourier transform infrared (FTIR) spectroscpoies using excitation from a synchrotron light source. A remarkably low mortality and low incidence of skeletal deformation is observed for exposure to both types of nanoparticles studied, despite the high concentrations employed in this work. XRF mapping demonstrates that both types of nanoparticle are found to agglomerate in the body of the sea urchins. FTIR spectra indicates that alkyl-SiNCs remain intact after ingestion and corresponding XRF maps show increased an oxygen throughout the organisms, possibly related to oxidation products arising from reactive oxygen species generated in the presence of the nanoparticles. Exposure to SiO2-coated IONPs is found to produce sulphur-containing species, which may be the result of a biological response in order to reduce the toxicity of the nanomaterial.

You might also be interested in these eBooks

Info:

[1] V. Torres-Costa, R.J. Martín-Palma, Application of nanostructured porous silicon in the field of optics. A review, J. Mater. Sci. 45 (2010) 2823-2838.

DOI: 10.1007/s10853-010-4251-8

Google Scholar

[2] Y. He, C. Fan, S-T. Lee, Silicon nanostructures for bioapplications, Nano Today 5 (2010) 282-295.

DOI: 10.1016/j.nantod.2010.06.008

Google Scholar

[3] A.K. Gupta, M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications, Biomaterials 26 (2005) 3995-4021.

DOI: 10.1016/j.biomaterials.2004.10.012

Google Scholar

[4] N. O'Farrell, A. Houlton, B.R. Horrocks, Silicon nanoparticles: applications in cell biology and medicine. Inter. J. Nanomed. 1 (2006) 451-472.

Google Scholar

[5] J.M. Perez, Iron oxide nanoparticles: Hidden talent. Nature Nanotechnology 2 (2007) 535-536.

Google Scholar

[6] S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L.V. Elst, R.N. Muller, Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization physicochemical characterizations and biological applications, Chem. Rev. 108 (2008) 2064-2110.

DOI: 10.1021/cr068445e

Google Scholar

[7] A.S. Teja, P-Y. Koh, Synthesis, properties, and applications of magnetic iron oxide nanoparticles, Progr. Cryst. Growth Character. Mater. 55 (2009) 22-45.

Google Scholar

[8] OECD. 2010. No. 27-ENV/JM/MONO(2010)46, List of manufactured nanomaterials and list of endpoints for phase one of nanomaterials: Revision, Available at: http: /www. oecd. org/document/53/0, 3746, en_ 2649_37015404_37760309_1_1_1_1, 00. html.

Google Scholar

[9] N. Kobayashi, Marine pollution bioassay by using sea urchin eggs in the Tanabe Bay, Wakayama Prefecture, Japan, 1970-1987, Mar. Pollut. Bull. 23 (1991) 709-713.

DOI: 10.1016/0025-326x(91)90765-k

Google Scholar

[10] K.J. Kroeker, R.L. Kordas, R.N. Crim, R.N., G.G. Singh, Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms, Ecol. Lett. 13 (2010)1419-1434.

DOI: 10.1111/j.1461-0248.2010.01518.x

Google Scholar

[11] B.R. Jasny B.A. Prunell, The glorious sea urchin - Introduction, Science 314 (2006) 938.

Google Scholar

[12] F.H. Wilt, Developmental biology meets materials science: Morphogenesis of biomineralized structures, Dev. Biol. 280 (2005) 15-25.

DOI: 10.1016/j.ydbio.2005.01.019

Google Scholar

[13] R. Bonaventura, V. Poma, R. Russo, F. Zito, Effects of UV-B radiation on development and hsp70 expression in sea urchin cleavage embryos, Mar. Biol. 149 (2006) 79-86.

DOI: 10.1007/s00227-005-0213-0

Google Scholar

[14] V. Matranga, F. Zito, C. Costa, R. Bonaventura, R., S. Giarrusso, S., F. Celi, Embryonic development and skeletogenic gene expression affected by X-rays in the Mediterranean sea urchin Paracentrotus Lividus, Ecotoxicology 19 (2010) 530-537.

DOI: 10.1007/s10646-009-0444-9

Google Scholar

[15] N.H. Alsharif, C.E.M. Berger, S.S. Varanasi, Y. Chao, B.R. Horrocks, H.K. Datta, Alkyl-capped silicon nanocrystals lack cytotoxicity and have enhanced intracellular accumulation in malignant cells via cholesterol-dependent endocytosis, Small 5(2) (2009).

DOI: 10.1002/smll.200800903

Google Scholar

[16] Shiohara, S. Handa, S. Prabakar, K. Fujioka, T.H. Lim, K. Yamamoto, P.T. Northcote, R.D. Tilley, Chemical Reactions on Surface Molecules Attached to Silicon Quantum Dots, J. Am. Chem. Soc. 132 (2010) 248-253.

DOI: 10.1021/ja906501v

Google Scholar

[17] L. Ruizendaal, S. Bhattacharjee, K. Pournazari, M. Rosso-Vasic, L.H.J. de Haan, G.M. Alink, A.T.M. Marcelis, H. Zuilhof, Synthesis and cytotoxicity of silicon nanoparticles with covalently attached organic monolayers, Nanotoxicology 3 (2009).

DOI: 10.3109/17435390903288896

Google Scholar

[18] H. Zuilhof, S. Bhattacharjee, A.T.M. Marcelis, I. Rietjens, G.M. Alink, S. Kauzlarich, M. Singh, T. Atkins, S. Regli, J. Veinot, R. Clark, A. Shukaliak, M. Fink, T. Purkait, B. Mitchell, Z. Xu, Cytotoxicity of Surface-funcionalized Silicon and Germanium Nanoparticles: The Dominant role of Surface Charges, Nanoscale 5(11) (2013).

DOI: 10.1039/c3nr34266b

Google Scholar

[19] A.D. Durnev, A.S. Solomina, N.O. Daugel-Dauge, A.K. Zhanataev, E.D. Shreder, E.P. Nemova, O.V. Shreder, V.A. Veligura, L.A. Osminkina, V.Y. Timoshenko, S.B. Seredenin, Evaluation of genotoxicity and reproductive toxicity of silicon nanocrystals, Bull. Exp. Biol. Med. 149(4) (2010).

DOI: 10.1007/s10517-010-0967-3

Google Scholar

[20] J-H. Park, L. Gu, G. von Maltzahn, E. Ruoslahti, S.N. Bhatia, M.J. Sailor, Biodegradable luminescent porous silicon nanoparticles for in vivo application, Nat. Mater. 8 (2009) 331-336.

DOI: 10.1038/nmat2398

Google Scholar

[21] L. Stanca, S.N. Petrache, M. Radu, A.I. Serban, M.C. Munteanu, D. Teodorescu, A.C. Staicu, C. Sima, M. Costache, C. Grigoriu, O. Zarnescu, A. Dinischioutu, Impact of silicon-based quantum dots on the antioxidative system in white muscle of Carassius auratus gibelio, Fish Physiol. Biochem. 38 (2012).

DOI: 10.1007/s10695-011-9582-0

Google Scholar

[22] S.N. Petrache, L. Stanca, A.I. Serban, C. Sima, A.C. Staicu, M.C. Munteanu, M. Costache, R. Burlacu, O. Zarnescu, A. Dinischioutu, Structural and Oxidative Changes in the Kidney of Crucian Carp Induced by Silicon-Based Quantum Dots, Int. J. Mol. Sci. 13(8) (2012).

DOI: 10.3390/ijms130810193

Google Scholar

[23] L. Stanca, S.N. Petrache, A.I. Serban, A.C. Staicu, C. Sima, M.C. Munteanu, O. Zarnescu, D. Dinu, M. Costache, A. Dinischioutu, Interaction of silicon based quantum dots with gibel carp liver: oxidative and structural modifications, Nanoscale Res. Lett. 8 (2013).

DOI: 10.1186/1556-276x-8-254

Google Scholar

[24] M. Mahmoudi, H. Hofmann, B. Rothen-Rutishauser, A. Fetri-Fink, Assessing the in vitro and in vivo toxicity of superparamagnetic iron oxide nanoparticles, Chem. Rev. 112 (2012) 2323-2338.

DOI: 10.1021/cr2002596

Google Scholar

[25] H.L. Karlsson, J. Gustafsson, P. Cronholm, L. Möller, Size-dependent toxicity of metal oxide particles-A comparison between nano- and micrometer size, Toxicol. Lett. 188 (2009) 112-118.

DOI: 10.1016/j.toxlet.2009.03.014

Google Scholar

[26] S. Naqvi, M. Samim, M.Z. Abdin, F.J. Ahmed, A.N. Maitra, C.K. Prashant, A.K. Dinda, Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress, Int. J. Nanomed. 5 (2010) 983-989.

DOI: 10.2147/ijn.s13244

Google Scholar

[27] M. Mahmoudi, S. Laurent, M. Shokrgozar, M. Hosseinkhani, Toxicity evaluations of superparamagnetic iron oxide nanoparticles: Cell vision, versus physicochemical properties of nanoparticles, ACS NANO 5(9) (2011) 7263-7276.

DOI: 10.1021/nn2021088

Google Scholar

[28] B. Szalay, E. Tátrai, G. Nyíró, T. Vezér, G. Dura, Potential toxic effects of iron oxide nanoparticles in in vivo and in vitro experiments, J. Appl. Toxicol. 32 (2012) 446-453.

DOI: 10.1002/jat.1779

Google Scholar

[29] L. Gu, R.H. Fang, M.J. Sailor, J-H. Park, In vivo clearance and toxicity of monodisperse iron oxide nanocrystals, ACS NANO 6(6) (2012) 4947-4954.

DOI: 10.1021/nn300456z

Google Scholar

[30] X. Zhu, S. Tian, Z. Cai, Toxicity assessment of iron oxide nanoparticles in zebrafish (Danio rerio) early life stages, PLoS One 7 (2012) e46286.

DOI: 10.1371/journal.pone.0046286

Google Scholar

[31] E. Kadar, D.M. Lowe, M. Sole, A.S. Fisher, A.N. Jha, J.W. Readman, T.H. Hutchinson, Uptake and biological responses to nano-Fe versus soluble FeCl3 in excised mussel gills, Anal. Bioanal. Chem. 396 (2010) 657-666.

DOI: 10.1007/s00216-009-3191-0

Google Scholar

[32] E. Kadar, F. Simmance, O. Martin, N. Voulvoulis, S. Widdicombe, S. Mitov, J.R. Lead, J.W. Readman, The influence of engineered Fe2O3 nanoaprticles and soluble FeCl3 iron on the developmental toxicity caused by CO2-induced seawater acidification, Environ. Pollut. 158 (2010).

DOI: 10.1016/j.envpol.2010.03.025

Google Scholar

[33] N. Kobayashi, H. Okamura, Effects of heavy metals on sea urchin embryo development. Part 2. Interactive toxic effects of heavy metals in synthetic mine effluents, Chemosphere 61 (2005) 1198-1203.

DOI: 10.1016/j.chemosphere.2005.02.071

Google Scholar

[34] G. Pagano, E. His, R. Beiras, A.D. Biase, L.G. Korkina, M. Iaccarino, R. Oral, F. Quiniou, M. Warnau, N.M. Trieff, Cytogenetic, developmental, and biochemical effects of aluminium, iron, and their mixture in sea urchins and mussels, Arch. Environ. Contam. Toxicol. 31 (1996).

DOI: 10.1007/bf00212429

Google Scholar

[35] C. Falugi, M.G. Aluigi, M.C. Chiantore, D. Privitera, P. Ramoino, M.A. Gatti, A. Fabrizi, A. Pinsino, V. Matranga, Toxicity of metal oxide nanoparticles in immune cells of the sea urchin, Mar. Environ. Res. 76 (2012) 114-121.

DOI: 10.1016/j.marenvres.2011.10.003

Google Scholar

[36] L.H. Lie, M. Duerdin, E.M. Tuite, A. Houlton, B.R. Horrocks, Preparation and characterization of luminescent alkylated-silicon quantum dot, J. Electroanal. Chem. 538-539 (2002)183-190.

DOI: 10.1016/s0022-0728(02)00994-4

Google Scholar

[37] M.M. Rahman, S.B. Khan, A. Jamal, M. Faisal, A.M. Aisiri, 3 Iron oxide nanoparticles' in 'Nanomaterial, eds Rahman M. InTech: (2011) 43-66.

Google Scholar

[38] W. Wu, Q. He, C. Jiang, Magnetic iron oxide nanoparticles: Synthesis and surface functionalization strategies, Nanoscale Res. Lett. 3 (2008) 397-415.

DOI: 10.1007/s11671-008-9174-9

Google Scholar

[39] S. Kralj, D. Makovec, S. Čampelj, M. Drofenik, Producing ultra-thin silica coatings on iron-oxide nanoparticles to improve their surface reactivity, J. Magn. Magn. Mater. 332 (2010) 1847-1853.

DOI: 10.1016/j.jmmm.2009.12.038

Google Scholar

[40] F.M. Dickinson, T.A. Alsop, N. Al-Sharif, C.E.M. Berger, H.K. Datta, L. Šiller, Y. Chao, E.M. Tuite, A. Houlton, B.R. Horrocks, Dispersions of alkyl-capped silicon nanocrystals in aqueous media: photoluminescence and ageing, Analyst 133 (2008).

DOI: 10.1039/b801921e

Google Scholar

[41] Y. Chao, S. Krishnamurthy, M. Montalti, L.H. Lie, A. Houlton, B.R. Horrocks, L. Kjeldgaard, V.R. Dhanak, M.R.C. Hunt, L. Šiller, Reactions and luminescence in passivated Si Nanocrystallites induced by vacuum ultraviolet and soft-x-ray photons, J. Appl. Phys. 98 (044316) (2005).

DOI: 10.1063/1.2012511

Google Scholar

[42] Y. Chao, L. Šiller, S. Krishnamurthy, P.R. Coxon, U. Bangert, M. Gass, L. Kjeldgaard, S.N. Patole, L.H. Lie, N. O'Farrell, T.A. Alsop, A. Houlton, B.R. Horrocks, Evaporation and deposition of alkyl-capped silicon nanocrystals in ultrahigh vacuum, Nat. Nanotechnol. 2 (2007).

DOI: 10.1038/nnano.2007.224

Google Scholar

[43] P. Coxon, Y. Chao, B.R. Horrocks, M. Gass, U. Bangert, L. Šiller, Electron energy loss spectroscopy on alkylated silicon nanocrystals, J. Appl. Phys. 104 (084318) (2008) 1-8.

DOI: 10.1063/1.3000566

Google Scholar

[44] L. Šiller, S. Krishnamurthy, L. Kjeldgaard, B.R. Horrocks, Y. Chao, A. Houlton, A.K. Chakraborty, M.R.C. Hunt, Core and valence exciton formation in x-ray absorption, x-ray emission and x-ray excited optical luminescence from passivated Si nanocrystals at the Si L2, 3 edge, J. Phys. - Condens. Mat. 21 (095005) (2009).

DOI: 10.1088/0953-8984/21/9/095005

Google Scholar

[45] S. Kralj, M. Drofenik, D. Makovec, Controlled surface funtionalization of silica-coated magnetic nanoparticles with terminal amino-and carboxyl groups, J. Nanopart. Res. 13 (2011) 2829-2841.

DOI: 10.1007/s11051-010-0171-4

Google Scholar

[46] B. Kaulich, J. Susini, C. David, E. Di Fabrizio, G. Morrison, P. Charalambous, et al., A European Twin X-ray Microscopy Station Commissioned at ELETTRA in Proceeding of 8th International Conference on X-ray micros Edited by Aoki S, Kagoshima Y, Suzuki Y, Conf Proc Series IPAP 7 (2006).

Google Scholar

[47] A. Gianoncelli, G.R. Morrison, B. Kaulich, D. Bacescu, J. Kovac, Scanning transmission x-ray microscopy with a configurable detector, Appl. Phys. Lett. 89 (2006) 25.

DOI: 10.1063/1.2422908

Google Scholar

[48] A. Sole, E. Papillon, M. Cotte, Ph. Walter, J. Susini, A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra, Spectrochim. Acta B 62 (2007) 63-68.

DOI: 10.1016/j.sab.2006.12.002

Google Scholar

[49] E. Carlisle, Si: and essential element for the chick, Science 178 (1972) 619-621.

Google Scholar

[50] F.H. Wilt, Matrix and mineral in the sea urchin larval skeleton, J. Struct. Biol. 126 (1999) 216–226.

DOI: 10.1006/jsbi.1999.4105

Google Scholar

[51] C. Jones, D.W. Grainger, In vitro assessments of nanomaterial toxicity, Adv. Drug Deliver. Rev. 61(6) (2009) 438-456.

DOI: 10.1016/j.addr.2009.03.005

Google Scholar

[52] D.D. Stefano, R. Carnuccio, M.C. Maiuri, Nanomaterials toxicity and cell death modalities, J. Drug Deliver. (ID167896): 1-14.

DOI: 10.1155/2012/167896

Google Scholar

[53] K. Fujioka, M. Hiruoka, K. Sato, N. Manabe, R. Miyasaka, S. Hanada, A. Hoshino, R.D. Tilley, Y. Manome, K. Hiraduri, K. Yamamoto, Luminescent passive-oxidized silicon quantum dots as biological staining labels and their cytotoxicity effects at high concentration, Nanotechnology 19(415102) (2008).

DOI: 10.1088/0957-4484/19/41/415102

Google Scholar

[54] S.P. Low, K.A. Williams, L.T. Canham, N.H. Voelcker, Generation of reactive oxygen species from porous silicon microparticles in cell culture medium, J. Biomed. Mater. Res. Part A 93 A(3) (2010) 1124-1131.

DOI: 10.1002/jbm.a.32610

Google Scholar

[55] S. Piticharoenphun, L. Šiller, M-L. Lemloh, M. Salome, M. Cotte, B. Kaulich, A. Giononcelli, B.G. Mendis, U. Bangert, N.R.J. Poolton, B.R. Horrocks, F. Brümmer, D. Medaković, Agglomeration of silver nanoparticles in sea urchin, Int. J. Environ. Pollut. Remed. 1(1) (2012).

DOI: 10.11159/ijepr.2012.007

Google Scholar

[56] X. Long, M. Nasse, Y. Ma, L. Qi, From synthetic to biogenic Mg-containing calcites: a comparative study using FTIR microspectroscopy, Phys. Chem. Chem. Phys. 14 (2012) 2255-2263.

DOI: 10.1039/c2cp22453d

Google Scholar

[57] J. Liu J, R.H. Hurt, Ion release kinetics and particle persistence in aqueous nano-silver colloids, Environ. Sci. Technol. 44 (2010) 2169-2175.

DOI: 10.1021/es9035557

Google Scholar

[58] S. Ayata, H. Yildiran, Optimization of extraction of silver from silver sulphide concentrates by thiosulphate leaching, Miner. Eng. 18 (2005) 898-900.

DOI: 10.1016/j.mineng.2005.01.020

Google Scholar

[59] D. Feng D, J.S.J. van Deventer, Effect of thiosulphate salts on ammoniacal thiosulphate leaching of gold, Hydrometallurgy 105 (2010) 120-126.

DOI: 10.1016/j.hydromet.2010.08.011

Google Scholar

[60] A. Barth, The infrared absorption of amino acid side chains, Progr. Biophys. Mol. Biol. 74 (2000) 141-173.

Google Scholar

[61] L.K. Tamm, S.A. Tatulian, Infrared spectroscopy of proteins and peptides in lipid bilayers, Quarter. Rev. Biophys. 30(4) (1997) 365-429.

DOI: 10.1017/s0033583597003375

Google Scholar

[62] J.P. Davis, G.C. Stephens, Regulation of net amino acid exchange in sea urchin larvae, Am. Physiol. Soc. 247 (1984) R1029-R1037.

DOI: 10.1152/ajpregu.1984.247.6.r1029

Google Scholar

[63] R.M. Roat-Malone 1 Inorganic chemistry essentials' in 'Bioinorganic Chemistry-A Short Course, 2nd edition. John Wiley & Sons, Inc. (2007) 1-28.

Google Scholar

[64] T. Gustafson, M.B. Hjelte, The amino acid metabolism of the developing sea urchin egg, Exp. Cell Res. 2(3) (1951) 474-490.

DOI: 10.1016/0014-4827(51)90034-1

Google Scholar

[65] B.J. Fry, P.R. Gross, Patterns and rates of protein synthesis in sea urchin embryos: II. The calculation of absolute rates, Dev. Biol. 21 (1970) 125-146.

DOI: 10.1016/0012-1606(70)90065-5

Google Scholar

[66] G. Socrates, Infrared Characteristic Group Frequencies: Tables and Charts. 2nd edition. John Wiley & Sons Ltd. (1994).

Google Scholar