[1]
V. Torres-Costa, R.J. Martín-Palma, Application of nanostructured porous silicon in the field of optics. A review, J. Mater. Sci. 45 (2010) 2823-2838.
DOI: 10.1007/s10853-010-4251-8
Google Scholar
[2]
Y. He, C. Fan, S-T. Lee, Silicon nanostructures for bioapplications, Nano Today 5 (2010) 282-295.
DOI: 10.1016/j.nantod.2010.06.008
Google Scholar
[3]
A.K. Gupta, M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications, Biomaterials 26 (2005) 3995-4021.
DOI: 10.1016/j.biomaterials.2004.10.012
Google Scholar
[4]
N. O'Farrell, A. Houlton, B.R. Horrocks, Silicon nanoparticles: applications in cell biology and medicine. Inter. J. Nanomed. 1 (2006) 451-472.
Google Scholar
[5]
J.M. Perez, Iron oxide nanoparticles: Hidden talent. Nature Nanotechnology 2 (2007) 535-536.
Google Scholar
[6]
S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L.V. Elst, R.N. Muller, Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization physicochemical characterizations and biological applications, Chem. Rev. 108 (2008) 2064-2110.
DOI: 10.1021/cr068445e
Google Scholar
[7]
A.S. Teja, P-Y. Koh, Synthesis, properties, and applications of magnetic iron oxide nanoparticles, Progr. Cryst. Growth Character. Mater. 55 (2009) 22-45.
Google Scholar
[8]
OECD. 2010. No. 27-ENV/JM/MONO(2010)46, List of manufactured nanomaterials and list of endpoints for phase one of nanomaterials: Revision, Available at: http: /www. oecd. org/document/53/0, 3746, en_ 2649_37015404_37760309_1_1_1_1, 00. html.
Google Scholar
[9]
N. Kobayashi, Marine pollution bioassay by using sea urchin eggs in the Tanabe Bay, Wakayama Prefecture, Japan, 1970-1987, Mar. Pollut. Bull. 23 (1991) 709-713.
DOI: 10.1016/0025-326x(91)90765-k
Google Scholar
[10]
K.J. Kroeker, R.L. Kordas, R.N. Crim, R.N., G.G. Singh, Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms, Ecol. Lett. 13 (2010)1419-1434.
DOI: 10.1111/j.1461-0248.2010.01518.x
Google Scholar
[11]
B.R. Jasny B.A. Prunell, The glorious sea urchin - Introduction, Science 314 (2006) 938.
Google Scholar
[12]
F.H. Wilt, Developmental biology meets materials science: Morphogenesis of biomineralized structures, Dev. Biol. 280 (2005) 15-25.
DOI: 10.1016/j.ydbio.2005.01.019
Google Scholar
[13]
R. Bonaventura, V. Poma, R. Russo, F. Zito, Effects of UV-B radiation on development and hsp70 expression in sea urchin cleavage embryos, Mar. Biol. 149 (2006) 79-86.
DOI: 10.1007/s00227-005-0213-0
Google Scholar
[14]
V. Matranga, F. Zito, C. Costa, R. Bonaventura, R., S. Giarrusso, S., F. Celi, Embryonic development and skeletogenic gene expression affected by X-rays in the Mediterranean sea urchin Paracentrotus Lividus, Ecotoxicology 19 (2010) 530-537.
DOI: 10.1007/s10646-009-0444-9
Google Scholar
[15]
N.H. Alsharif, C.E.M. Berger, S.S. Varanasi, Y. Chao, B.R. Horrocks, H.K. Datta, Alkyl-capped silicon nanocrystals lack cytotoxicity and have enhanced intracellular accumulation in malignant cells via cholesterol-dependent endocytosis, Small 5(2) (2009).
DOI: 10.1002/smll.200800903
Google Scholar
[16]
Shiohara, S. Handa, S. Prabakar, K. Fujioka, T.H. Lim, K. Yamamoto, P.T. Northcote, R.D. Tilley, Chemical Reactions on Surface Molecules Attached to Silicon Quantum Dots, J. Am. Chem. Soc. 132 (2010) 248-253.
DOI: 10.1021/ja906501v
Google Scholar
[17]
L. Ruizendaal, S. Bhattacharjee, K. Pournazari, M. Rosso-Vasic, L.H.J. de Haan, G.M. Alink, A.T.M. Marcelis, H. Zuilhof, Synthesis and cytotoxicity of silicon nanoparticles with covalently attached organic monolayers, Nanotoxicology 3 (2009).
DOI: 10.3109/17435390903288896
Google Scholar
[18]
H. Zuilhof, S. Bhattacharjee, A.T.M. Marcelis, I. Rietjens, G.M. Alink, S. Kauzlarich, M. Singh, T. Atkins, S. Regli, J. Veinot, R. Clark, A. Shukaliak, M. Fink, T. Purkait, B. Mitchell, Z. Xu, Cytotoxicity of Surface-funcionalized Silicon and Germanium Nanoparticles: The Dominant role of Surface Charges, Nanoscale 5(11) (2013).
DOI: 10.1039/c3nr34266b
Google Scholar
[19]
A.D. Durnev, A.S. Solomina, N.O. Daugel-Dauge, A.K. Zhanataev, E.D. Shreder, E.P. Nemova, O.V. Shreder, V.A. Veligura, L.A. Osminkina, V.Y. Timoshenko, S.B. Seredenin, Evaluation of genotoxicity and reproductive toxicity of silicon nanocrystals, Bull. Exp. Biol. Med. 149(4) (2010).
DOI: 10.1007/s10517-010-0967-3
Google Scholar
[20]
J-H. Park, L. Gu, G. von Maltzahn, E. Ruoslahti, S.N. Bhatia, M.J. Sailor, Biodegradable luminescent porous silicon nanoparticles for in vivo application, Nat. Mater. 8 (2009) 331-336.
DOI: 10.1038/nmat2398
Google Scholar
[21]
L. Stanca, S.N. Petrache, M. Radu, A.I. Serban, M.C. Munteanu, D. Teodorescu, A.C. Staicu, C. Sima, M. Costache, C. Grigoriu, O. Zarnescu, A. Dinischioutu, Impact of silicon-based quantum dots on the antioxidative system in white muscle of Carassius auratus gibelio, Fish Physiol. Biochem. 38 (2012).
DOI: 10.1007/s10695-011-9582-0
Google Scholar
[22]
S.N. Petrache, L. Stanca, A.I. Serban, C. Sima, A.C. Staicu, M.C. Munteanu, M. Costache, R. Burlacu, O. Zarnescu, A. Dinischioutu, Structural and Oxidative Changes in the Kidney of Crucian Carp Induced by Silicon-Based Quantum Dots, Int. J. Mol. Sci. 13(8) (2012).
DOI: 10.3390/ijms130810193
Google Scholar
[23]
L. Stanca, S.N. Petrache, A.I. Serban, A.C. Staicu, C. Sima, M.C. Munteanu, O. Zarnescu, D. Dinu, M. Costache, A. Dinischioutu, Interaction of silicon based quantum dots with gibel carp liver: oxidative and structural modifications, Nanoscale Res. Lett. 8 (2013).
DOI: 10.1186/1556-276x-8-254
Google Scholar
[24]
M. Mahmoudi, H. Hofmann, B. Rothen-Rutishauser, A. Fetri-Fink, Assessing the in vitro and in vivo toxicity of superparamagnetic iron oxide nanoparticles, Chem. Rev. 112 (2012) 2323-2338.
DOI: 10.1021/cr2002596
Google Scholar
[25]
H.L. Karlsson, J. Gustafsson, P. Cronholm, L. Möller, Size-dependent toxicity of metal oxide particles-A comparison between nano- and micrometer size, Toxicol. Lett. 188 (2009) 112-118.
DOI: 10.1016/j.toxlet.2009.03.014
Google Scholar
[26]
S. Naqvi, M. Samim, M.Z. Abdin, F.J. Ahmed, A.N. Maitra, C.K. Prashant, A.K. Dinda, Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress, Int. J. Nanomed. 5 (2010) 983-989.
DOI: 10.2147/ijn.s13244
Google Scholar
[27]
M. Mahmoudi, S. Laurent, M. Shokrgozar, M. Hosseinkhani, Toxicity evaluations of superparamagnetic iron oxide nanoparticles: Cell vision, versus physicochemical properties of nanoparticles, ACS NANO 5(9) (2011) 7263-7276.
DOI: 10.1021/nn2021088
Google Scholar
[28]
B. Szalay, E. Tátrai, G. Nyíró, T. Vezér, G. Dura, Potential toxic effects of iron oxide nanoparticles in in vivo and in vitro experiments, J. Appl. Toxicol. 32 (2012) 446-453.
DOI: 10.1002/jat.1779
Google Scholar
[29]
L. Gu, R.H. Fang, M.J. Sailor, J-H. Park, In vivo clearance and toxicity of monodisperse iron oxide nanocrystals, ACS NANO 6(6) (2012) 4947-4954.
DOI: 10.1021/nn300456z
Google Scholar
[30]
X. Zhu, S. Tian, Z. Cai, Toxicity assessment of iron oxide nanoparticles in zebrafish (Danio rerio) early life stages, PLoS One 7 (2012) e46286.
DOI: 10.1371/journal.pone.0046286
Google Scholar
[31]
E. Kadar, D.M. Lowe, M. Sole, A.S. Fisher, A.N. Jha, J.W. Readman, T.H. Hutchinson, Uptake and biological responses to nano-Fe versus soluble FeCl3 in excised mussel gills, Anal. Bioanal. Chem. 396 (2010) 657-666.
DOI: 10.1007/s00216-009-3191-0
Google Scholar
[32]
E. Kadar, F. Simmance, O. Martin, N. Voulvoulis, S. Widdicombe, S. Mitov, J.R. Lead, J.W. Readman, The influence of engineered Fe2O3 nanoaprticles and soluble FeCl3 iron on the developmental toxicity caused by CO2-induced seawater acidification, Environ. Pollut. 158 (2010).
DOI: 10.1016/j.envpol.2010.03.025
Google Scholar
[33]
N. Kobayashi, H. Okamura, Effects of heavy metals on sea urchin embryo development. Part 2. Interactive toxic effects of heavy metals in synthetic mine effluents, Chemosphere 61 (2005) 1198-1203.
DOI: 10.1016/j.chemosphere.2005.02.071
Google Scholar
[34]
G. Pagano, E. His, R. Beiras, A.D. Biase, L.G. Korkina, M. Iaccarino, R. Oral, F. Quiniou, M. Warnau, N.M. Trieff, Cytogenetic, developmental, and biochemical effects of aluminium, iron, and their mixture in sea urchins and mussels, Arch. Environ. Contam. Toxicol. 31 (1996).
DOI: 10.1007/bf00212429
Google Scholar
[35]
C. Falugi, M.G. Aluigi, M.C. Chiantore, D. Privitera, P. Ramoino, M.A. Gatti, A. Fabrizi, A. Pinsino, V. Matranga, Toxicity of metal oxide nanoparticles in immune cells of the sea urchin, Mar. Environ. Res. 76 (2012) 114-121.
DOI: 10.1016/j.marenvres.2011.10.003
Google Scholar
[36]
L.H. Lie, M. Duerdin, E.M. Tuite, A. Houlton, B.R. Horrocks, Preparation and characterization of luminescent alkylated-silicon quantum dot, J. Electroanal. Chem. 538-539 (2002)183-190.
DOI: 10.1016/s0022-0728(02)00994-4
Google Scholar
[37]
M.M. Rahman, S.B. Khan, A. Jamal, M. Faisal, A.M. Aisiri, 3 Iron oxide nanoparticles' in 'Nanomaterial, eds Rahman M. InTech: (2011) 43-66.
Google Scholar
[38]
W. Wu, Q. He, C. Jiang, Magnetic iron oxide nanoparticles: Synthesis and surface functionalization strategies, Nanoscale Res. Lett. 3 (2008) 397-415.
DOI: 10.1007/s11671-008-9174-9
Google Scholar
[39]
S. Kralj, D. Makovec, S. Čampelj, M. Drofenik, Producing ultra-thin silica coatings on iron-oxide nanoparticles to improve their surface reactivity, J. Magn. Magn. Mater. 332 (2010) 1847-1853.
DOI: 10.1016/j.jmmm.2009.12.038
Google Scholar
[40]
F.M. Dickinson, T.A. Alsop, N. Al-Sharif, C.E.M. Berger, H.K. Datta, L. Šiller, Y. Chao, E.M. Tuite, A. Houlton, B.R. Horrocks, Dispersions of alkyl-capped silicon nanocrystals in aqueous media: photoluminescence and ageing, Analyst 133 (2008).
DOI: 10.1039/b801921e
Google Scholar
[41]
Y. Chao, S. Krishnamurthy, M. Montalti, L.H. Lie, A. Houlton, B.R. Horrocks, L. Kjeldgaard, V.R. Dhanak, M.R.C. Hunt, L. Šiller, Reactions and luminescence in passivated Si Nanocrystallites induced by vacuum ultraviolet and soft-x-ray photons, J. Appl. Phys. 98 (044316) (2005).
DOI: 10.1063/1.2012511
Google Scholar
[42]
Y. Chao, L. Šiller, S. Krishnamurthy, P.R. Coxon, U. Bangert, M. Gass, L. Kjeldgaard, S.N. Patole, L.H. Lie, N. O'Farrell, T.A. Alsop, A. Houlton, B.R. Horrocks, Evaporation and deposition of alkyl-capped silicon nanocrystals in ultrahigh vacuum, Nat. Nanotechnol. 2 (2007).
DOI: 10.1038/nnano.2007.224
Google Scholar
[43]
P. Coxon, Y. Chao, B.R. Horrocks, M. Gass, U. Bangert, L. Šiller, Electron energy loss spectroscopy on alkylated silicon nanocrystals, J. Appl. Phys. 104 (084318) (2008) 1-8.
DOI: 10.1063/1.3000566
Google Scholar
[44]
L. Šiller, S. Krishnamurthy, L. Kjeldgaard, B.R. Horrocks, Y. Chao, A. Houlton, A.K. Chakraborty, M.R.C. Hunt, Core and valence exciton formation in x-ray absorption, x-ray emission and x-ray excited optical luminescence from passivated Si nanocrystals at the Si L2, 3 edge, J. Phys. - Condens. Mat. 21 (095005) (2009).
DOI: 10.1088/0953-8984/21/9/095005
Google Scholar
[45]
S. Kralj, M. Drofenik, D. Makovec, Controlled surface funtionalization of silica-coated magnetic nanoparticles with terminal amino-and carboxyl groups, J. Nanopart. Res. 13 (2011) 2829-2841.
DOI: 10.1007/s11051-010-0171-4
Google Scholar
[46]
B. Kaulich, J. Susini, C. David, E. Di Fabrizio, G. Morrison, P. Charalambous, et al., A European Twin X-ray Microscopy Station Commissioned at ELETTRA in Proceeding of 8th International Conference on X-ray micros Edited by Aoki S, Kagoshima Y, Suzuki Y, Conf Proc Series IPAP 7 (2006).
Google Scholar
[47]
A. Gianoncelli, G.R. Morrison, B. Kaulich, D. Bacescu, J. Kovac, Scanning transmission x-ray microscopy with a configurable detector, Appl. Phys. Lett. 89 (2006) 25.
DOI: 10.1063/1.2422908
Google Scholar
[48]
A. Sole, E. Papillon, M. Cotte, Ph. Walter, J. Susini, A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra, Spectrochim. Acta B 62 (2007) 63-68.
DOI: 10.1016/j.sab.2006.12.002
Google Scholar
[49]
E. Carlisle, Si: and essential element for the chick, Science 178 (1972) 619-621.
Google Scholar
[50]
F.H. Wilt, Matrix and mineral in the sea urchin larval skeleton, J. Struct. Biol. 126 (1999) 216–226.
DOI: 10.1006/jsbi.1999.4105
Google Scholar
[51]
C. Jones, D.W. Grainger, In vitro assessments of nanomaterial toxicity, Adv. Drug Deliver. Rev. 61(6) (2009) 438-456.
DOI: 10.1016/j.addr.2009.03.005
Google Scholar
[52]
D.D. Stefano, R. Carnuccio, M.C. Maiuri, Nanomaterials toxicity and cell death modalities, J. Drug Deliver. (ID167896): 1-14.
DOI: 10.1155/2012/167896
Google Scholar
[53]
K. Fujioka, M. Hiruoka, K. Sato, N. Manabe, R. Miyasaka, S. Hanada, A. Hoshino, R.D. Tilley, Y. Manome, K. Hiraduri, K. Yamamoto, Luminescent passive-oxidized silicon quantum dots as biological staining labels and their cytotoxicity effects at high concentration, Nanotechnology 19(415102) (2008).
DOI: 10.1088/0957-4484/19/41/415102
Google Scholar
[54]
S.P. Low, K.A. Williams, L.T. Canham, N.H. Voelcker, Generation of reactive oxygen species from porous silicon microparticles in cell culture medium, J. Biomed. Mater. Res. Part A 93 A(3) (2010) 1124-1131.
DOI: 10.1002/jbm.a.32610
Google Scholar
[55]
S. Piticharoenphun, L. Šiller, M-L. Lemloh, M. Salome, M. Cotte, B. Kaulich, A. Giononcelli, B.G. Mendis, U. Bangert, N.R.J. Poolton, B.R. Horrocks, F. Brümmer, D. Medaković, Agglomeration of silver nanoparticles in sea urchin, Int. J. Environ. Pollut. Remed. 1(1) (2012).
DOI: 10.11159/ijepr.2012.007
Google Scholar
[56]
X. Long, M. Nasse, Y. Ma, L. Qi, From synthetic to biogenic Mg-containing calcites: a comparative study using FTIR microspectroscopy, Phys. Chem. Chem. Phys. 14 (2012) 2255-2263.
DOI: 10.1039/c2cp22453d
Google Scholar
[57]
J. Liu J, R.H. Hurt, Ion release kinetics and particle persistence in aqueous nano-silver colloids, Environ. Sci. Technol. 44 (2010) 2169-2175.
DOI: 10.1021/es9035557
Google Scholar
[58]
S. Ayata, H. Yildiran, Optimization of extraction of silver from silver sulphide concentrates by thiosulphate leaching, Miner. Eng. 18 (2005) 898-900.
DOI: 10.1016/j.mineng.2005.01.020
Google Scholar
[59]
D. Feng D, J.S.J. van Deventer, Effect of thiosulphate salts on ammoniacal thiosulphate leaching of gold, Hydrometallurgy 105 (2010) 120-126.
DOI: 10.1016/j.hydromet.2010.08.011
Google Scholar
[60]
A. Barth, The infrared absorption of amino acid side chains, Progr. Biophys. Mol. Biol. 74 (2000) 141-173.
Google Scholar
[61]
L.K. Tamm, S.A. Tatulian, Infrared spectroscopy of proteins and peptides in lipid bilayers, Quarter. Rev. Biophys. 30(4) (1997) 365-429.
DOI: 10.1017/s0033583597003375
Google Scholar
[62]
J.P. Davis, G.C. Stephens, Regulation of net amino acid exchange in sea urchin larvae, Am. Physiol. Soc. 247 (1984) R1029-R1037.
DOI: 10.1152/ajpregu.1984.247.6.r1029
Google Scholar
[63]
R.M. Roat-Malone 1 Inorganic chemistry essentials' in 'Bioinorganic Chemistry-A Short Course, 2nd edition. John Wiley & Sons, Inc. (2007) 1-28.
Google Scholar
[64]
T. Gustafson, M.B. Hjelte, The amino acid metabolism of the developing sea urchin egg, Exp. Cell Res. 2(3) (1951) 474-490.
DOI: 10.1016/0014-4827(51)90034-1
Google Scholar
[65]
B.J. Fry, P.R. Gross, Patterns and rates of protein synthesis in sea urchin embryos: II. The calculation of absolute rates, Dev. Biol. 21 (1970) 125-146.
DOI: 10.1016/0012-1606(70)90065-5
Google Scholar
[66]
G. Socrates, Infrared Characteristic Group Frequencies: Tables and Charts. 2nd edition. John Wiley & Sons Ltd. (1994).
Google Scholar