Heavy Metals in Mollusc Shells: A Quick Method for their Detection

Article Preview

Abstract:

It is known for a long time that calcified tissues secreted by aquatic or terrestrial invertebrates – such as mollusc shells – have the ability to concentrate large amounts of pollutants, in particular heavy metals. In the present paper, we have found an extremely rapid and easy procedure to qualitatively detect the putative presence of heavy metals in shells, without having to use sophisticated techniques such as Wavelength Dispersive Spectroscopy, atomic adsorption spectroscopy or ICP-MS. Our method rests on the capacity of the silver enhancement chemicals that are traditionally used in immunogold localization experiments to increase the size of heavy metal nanoparticles, whatever the chemical element. It goes as follows: freshly broken pieces of shells that are suspected to contain traces of heavy metals are simply incubated 15 minutes in few drops of a silver enhancement solution (British Biocell International), and, after short rinsing and drying, the shell fragments are directly observed with a tabletop Scanning Electron Microscope, under back scattered electron (BSE) mode without any further preparation. Heavy metals nanoparticles are detected as bright spots. Our method is extremely fast (about half an hour in total), and may be used as a quick check for pre-selecting series of calcified samples prior to the quantitative analysis of their heavy metal content.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

340-345

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Zatta, S. Gobbo, P. Rocco, M. Perazzolo, M. Favarato, Evaluation of heavy-metal pollution in the Venetian lagoon by using Mytilus galloprovincialis as biological indicator, Sci. Total Environ. 119 (1992) 29-41.

DOI: 10.1016/0048-9697(92)90253-o

Google Scholar

[2] L.K. Kure, M.H. Depledge, Accumulation of organotin in Littorina littorea and Mya arenaria from Danish coastal waters, Environ. Pollut. 84 (1994) 149-157.

DOI: 10.1016/0269-7491(94)90098-1

Google Scholar

[3] G. Le Pennec, M. Le Pennec, Evaluation of the toxicity of chemical compounds using digestive acini of the bivalve mollusc Pecten maximus L. maintained alive in vitro, Aquat. Toxicol. 53 (2001) 1-7.

DOI: 10.1016/s0166-445x(00)00163-6

Google Scholar

[4] C.M. Ciocan, J.M. Rotchell, Cadmium induction of metallothionein isoforms in juvenile and adult mussel (Mytilus edulis), Environ. Sci. Technol. 38 (2004) 1073-1078.

DOI: 10.1021/es030110g

Google Scholar

[5] V. Funes, J. Alhama, J.I. Navas, J. Lopez-Barea, J. Peinado, Ecotoxicological effects of metal pollution in two mollusc species from the Spanish South Atlantic littoral, Environ. Pollut. 139 (2006) 214-223.

DOI: 10.1016/j.envpol.2005.05.016

Google Scholar

[6] X.W. Jia, Z.P. Zhang, G.D. Wang, Z.H. Zou, S.H. Wang, B.Q. Huang, Y.L. Wang, Expressed sequence tag analysis for identification and characterization of genes related to tributyltin (TBT) exposure in the abalone Haliotis diversicolor supertexta, Comp. Biochem. Physiol. D 4 (2009).

DOI: 10.1016/j.cbd.2009.06.002

Google Scholar

[7] C. Amiard-Triquet, C. Métayer, J.C. Amiard, B. Berthet, In situ and experimental studies of the ecotoxicology of four metals (Cd, Pb, Cu, Zn) on algae and grazing gastropod mollusks, Water Air Soil Pollut. 34 (1987) 11-30.

DOI: 10.1007/bf00176864

Google Scholar

[8] B. Berthet, J.C. Amiard, C. Amiard-Triquet, M. Martoja, A.Y. Jeantet, Bioaccumulation, toxicity and physicochemical speciation of silver in bivalve mollusks – ecotoxicological and health consequences, Sci. Total Environ. 125 (1992) 97-122.

DOI: 10.1016/0048-9697(92)90385-6

Google Scholar

[9] W. Traunspurger, C. Drews, Toxicity analysis of freshwater and marine sediments with meio- and macrobenthic organisms: a review, Hydrobiologia 328 (1996) 215-261.

DOI: 10.1007/bf00017632

Google Scholar

[10] J. Cortet, A. Gomot-De Vaufleury, N. Poinsot-Balaguer, L. Gomot, C. Texier, D. Cluzeau, The use of invertebrate soil fauna in monitoring pollutant effects, Eur. J. Soil Biol. 35 (1999) 115-134.

DOI: 10.1016/s1164-5563(00)00116-3

Google Scholar

[11] R. Scheifler, A. Gomot-De Vaufleury, M.L. Toussaint, P.M. Badot, Transfer and effects of cadmium in an experimental food chain involving the snail Helix aspersa and the predatory carabid beetle Chrysocarabus splendens, Chemosphere 48 (2002).

DOI: 10.1016/s0045-6535(02)00116-9

Google Scholar

[12] L.C. Hastie, P.J. Boon, M.R. Young, Physical microhabitat requirements of freshwater pearl mussels, Margaritifera margaritifera (L. ), Hydrobiologia 429 (2000) 59-71.

DOI: 10.1046/j.1365-2427.2000.00544.x

Google Scholar

[13] H. Frank, S. Gerstmann, declining populations of freshwater pearl mussels (Margaritifera margaritifera) are burdened with heavy metals and DDT/DDE, Ambio 36 (2007) 571-574.

DOI: 10.1579/0044-7447(2007)36[571:dpofpm]2.0.co;2

Google Scholar

[14] S. Del Piero, L. Masiero, S. Casellato, Influence of temperature on fluoride toxicity and bioaccumulation in the nonindigenous freshwater mollusc Dreissena polymorpha Pallas, 1769, Environ. Toxicol. Chem. 31 (2012) 2567-2571.

DOI: 10.1002/etc.1979

Google Scholar

[15] E.R. Daka, S.J. Hawkins, Tolerance of heavy metals in Littorina saxatilis from a metal contaminated estuary in the Isle of Man, J. Mar. Biol. Assoc. UK 84 (2004) 393-400.

DOI: 10.1017/s0025315404009336h

Google Scholar

[16] P. Miramand, D. Bentley, Concentration and distribution of heavy-metals in tissues of two cephalopods, Eledone cirrhosa and Sepia officinalis, from the French coast of the English-Channel, Mar. Biol. 114 (1992) 407-414.

DOI: 10.1007/bf00350031

Google Scholar

[17] K. Walsh, R.H. Dunstan, R.N. Murdoch, Differential bioaccumulation of heavy-metals and organopollutants in the soft tissue and shell of the marine gastropod, Austrocochlea constricta, Arch. Environ. Contam. Toxicol. 28 (1995) 35-39.

DOI: 10.1007/bf00213966

Google Scholar

[18] A. Cravo, M.J. Bebianno, P. Foster, Partitioning of trace metals between soft tissues and shells of Patella aspera, Environ. Intern. 30 (2004) 87-98.

DOI: 10.1016/s0160-4120(03)00154-5

Google Scholar

[19] L. Hédouin, M. Metian, J.L. Teyssie, S.W. Fowler, R. Fichez, M. Warnau, Allometric relationships in the bioconcentration of heavy metals by the edible tropical clam Gafrarium tumidum, Sci. Total Environ. 366 2006) 154-163.

DOI: 10.1016/j.scitotenv.2005.10.022

Google Scholar

[20] Y.S. Zver'kova, Use of freshwater mollusc shells for monitoring heavy metal pollution of the Dnieper ecosystem on the territory of Smolensk oblast, Russian J. Ecol. 40 (2009) 443-447.

DOI: 10.1134/s1067413609060113

Google Scholar

[21] A.C. Andrello, F. Lopes, T.D. Galvao, Mussel shell evaluation as bioindicator for heavy metals, in: A. Deppman, C. Krug, G.S. Zahn, J. Lubian, N. Added, V.S. Timoteo (Eds. ), XXXII Brazilian Workshop on Nuclear Physics, AIP Conference Proceedings, 2010, pp.110-113.

DOI: 10.1063/1.3447998

Google Scholar

[22] J. Machado, M. Lopes-Lima, Calcification mechanism in freshwater mussels: potential targets for cadmium, Toxicol. Environ. Chem. 93 (2011) 1778-1787.

DOI: 10.1080/02772248.2010.503656

Google Scholar

[23] G. Libralato, D. Minetto, S. Totaro, I. Micetic, A. Pigozzo, E. Sabbioni, A. Marcomini, A.V. Ghirardini, Embryotoxicity of TiO2 nanoparticles to Mytilus galloprovincialis (Lmk), Mar. Environ. Res. 92 (2013) 71-78.

DOI: 10.1016/j.marenvres.2013.08.015

Google Scholar

[24] G.A. Liehr, M.L. Zettler, T. Leipe, G. Witt, The ocean quahog Arctica islandica L.: a bioindicator for contaminated sediments, Mar. Biol. 147 (2005) 671-679.

DOI: 10.1007/s00227-005-1612-y

Google Scholar

[25] B.R. Schone, Artica islandica (Bivalvia): a unique paleoenvironmental archive of the northern North Atlantic Ocean, Global Planetary Change 11 (2013) 199-225.

DOI: 10.1016/j.gloplacha.2013.09.013

Google Scholar

[26] D.P. Gillikin, F. Dehairs, Uranium in aragonitic marine bivalve shells, Palaeogeogr. Palaeoclim. Palaeoecol. 373 (2013) 60-65.

DOI: 10.1016/j.palaeo.2012.02.028

Google Scholar

[27] F.A. Ismail, A.Z. Aris, P.A. Latif, Dynamic behaviour of Cd2+ adsorption in equilibrium batch studies by CaCO3-rich Corbicula fluminea shell, Environ. Sci. Pollut. Res. 21 (2014) 344-354.

DOI: 10.1007/s11356-013-1906-4

Google Scholar

[28] N. Trinkler, M. Labonne, F. Marin, A. Jolivet, M. Bohn, C. Poulain, J.F. Bardeau, C. Paillard, Clam shell repair from the brown ring disease: a study of the organic matrix using confocal Raman micro-spectrometry and WDS microprobe, Anal. Bioanal. Chem. 396 (2010).

DOI: 10.1007/s00216-009-3114-0

Google Scholar

[29] C. Gundacker, Comparison of heavy metal bioaccumulation in freshwater molluscs of urban river habitats in Vienna, Environ. Pollut. 110 (2000) 61-71.

DOI: 10.1016/s0269-7491(99)00286-9

Google Scholar

[30] A. Osuna-Mascaro, T. Cruz-Bustos, S. Benhamada, N. Guichard, B. Marie, L. Plasseraud, M. Corneillat, G. Alcaraz, A. Checa, F. Marin, The shell organic matrix of the crossed-lamellar queen conch shell (Strombus gigas), Comp. Biochem. Physiol. B 168 (2014).

DOI: 10.1016/j.cbpb.2013.11.009

Google Scholar

[31] F. Marin, B. Pokroy, G. Luquet, P. Layrolle, K. De Groot, Protein mapping of calcium carbonate biominerals by immunogold, Biomaterials 28 (2007) 2368-2377.

DOI: 10.1016/j.biomaterials.2007.01.029

Google Scholar

[32] H.E.A. Tudor, C.C. Gryte, C.C. Harris, Seashells: detoxifying agents for metal-contaminated waters, Water Air Soil Pollut. 173 (2006) 209-242.

DOI: 10.1007/s11270-005-9060-3

Google Scholar

[33] Y. Liu, C.B. Sun, J. Xu, Y.Z. Li, The use of raw and acid-pretreated bivalve mollusc shells to remove metals from aqueous solutions, J. Hazardous Mater. 168 (2009) 156-162.

DOI: 10.1016/j.jhazmat.2009.02.009

Google Scholar

[34] Y. Du, F. Lian, L.Y. Zhu, Biosorption of divalent Pb, Cd and Zn on aragonite and calcite mollusc shells, Environ. Pollut. 159 (2011) 1763-1768.

DOI: 10.1016/j.envpol.2011.04.017

Google Scholar

[35] Y. Du, L.Y. Zhu, G.Q. Shan, Removal of Cd2+ from contaminated water by nano-sized aragonite mollusc shell and the competition of coexisting metal ions, J. Colloid Interface Sci. 367 (2012) 378-382.

DOI: 10.1016/j.jcis.2011.10.023

Google Scholar