[1]
P. Zatta, S. Gobbo, P. Rocco, M. Perazzolo, M. Favarato, Evaluation of heavy-metal pollution in the Venetian lagoon by using Mytilus galloprovincialis as biological indicator, Sci. Total Environ. 119 (1992) 29-41.
DOI: 10.1016/0048-9697(92)90253-o
Google Scholar
[2]
L.K. Kure, M.H. Depledge, Accumulation of organotin in Littorina littorea and Mya arenaria from Danish coastal waters, Environ. Pollut. 84 (1994) 149-157.
DOI: 10.1016/0269-7491(94)90098-1
Google Scholar
[3]
G. Le Pennec, M. Le Pennec, Evaluation of the toxicity of chemical compounds using digestive acini of the bivalve mollusc Pecten maximus L. maintained alive in vitro, Aquat. Toxicol. 53 (2001) 1-7.
DOI: 10.1016/s0166-445x(00)00163-6
Google Scholar
[4]
C.M. Ciocan, J.M. Rotchell, Cadmium induction of metallothionein isoforms in juvenile and adult mussel (Mytilus edulis), Environ. Sci. Technol. 38 (2004) 1073-1078.
DOI: 10.1021/es030110g
Google Scholar
[5]
V. Funes, J. Alhama, J.I. Navas, J. Lopez-Barea, J. Peinado, Ecotoxicological effects of metal pollution in two mollusc species from the Spanish South Atlantic littoral, Environ. Pollut. 139 (2006) 214-223.
DOI: 10.1016/j.envpol.2005.05.016
Google Scholar
[6]
X.W. Jia, Z.P. Zhang, G.D. Wang, Z.H. Zou, S.H. Wang, B.Q. Huang, Y.L. Wang, Expressed sequence tag analysis for identification and characterization of genes related to tributyltin (TBT) exposure in the abalone Haliotis diversicolor supertexta, Comp. Biochem. Physiol. D 4 (2009).
DOI: 10.1016/j.cbd.2009.06.002
Google Scholar
[7]
C. Amiard-Triquet, C. Métayer, J.C. Amiard, B. Berthet, In situ and experimental studies of the ecotoxicology of four metals (Cd, Pb, Cu, Zn) on algae and grazing gastropod mollusks, Water Air Soil Pollut. 34 (1987) 11-30.
DOI: 10.1007/bf00176864
Google Scholar
[8]
B. Berthet, J.C. Amiard, C. Amiard-Triquet, M. Martoja, A.Y. Jeantet, Bioaccumulation, toxicity and physicochemical speciation of silver in bivalve mollusks – ecotoxicological and health consequences, Sci. Total Environ. 125 (1992) 97-122.
DOI: 10.1016/0048-9697(92)90385-6
Google Scholar
[9]
W. Traunspurger, C. Drews, Toxicity analysis of freshwater and marine sediments with meio- and macrobenthic organisms: a review, Hydrobiologia 328 (1996) 215-261.
DOI: 10.1007/bf00017632
Google Scholar
[10]
J. Cortet, A. Gomot-De Vaufleury, N. Poinsot-Balaguer, L. Gomot, C. Texier, D. Cluzeau, The use of invertebrate soil fauna in monitoring pollutant effects, Eur. J. Soil Biol. 35 (1999) 115-134.
DOI: 10.1016/s1164-5563(00)00116-3
Google Scholar
[11]
R. Scheifler, A. Gomot-De Vaufleury, M.L. Toussaint, P.M. Badot, Transfer and effects of cadmium in an experimental food chain involving the snail Helix aspersa and the predatory carabid beetle Chrysocarabus splendens, Chemosphere 48 (2002).
DOI: 10.1016/s0045-6535(02)00116-9
Google Scholar
[12]
L.C. Hastie, P.J. Boon, M.R. Young, Physical microhabitat requirements of freshwater pearl mussels, Margaritifera margaritifera (L. ), Hydrobiologia 429 (2000) 59-71.
DOI: 10.1046/j.1365-2427.2000.00544.x
Google Scholar
[13]
H. Frank, S. Gerstmann, declining populations of freshwater pearl mussels (Margaritifera margaritifera) are burdened with heavy metals and DDT/DDE, Ambio 36 (2007) 571-574.
DOI: 10.1579/0044-7447(2007)36[571:dpofpm]2.0.co;2
Google Scholar
[14]
S. Del Piero, L. Masiero, S. Casellato, Influence of temperature on fluoride toxicity and bioaccumulation in the nonindigenous freshwater mollusc Dreissena polymorpha Pallas, 1769, Environ. Toxicol. Chem. 31 (2012) 2567-2571.
DOI: 10.1002/etc.1979
Google Scholar
[15]
E.R. Daka, S.J. Hawkins, Tolerance of heavy metals in Littorina saxatilis from a metal contaminated estuary in the Isle of Man, J. Mar. Biol. Assoc. UK 84 (2004) 393-400.
DOI: 10.1017/s0025315404009336h
Google Scholar
[16]
P. Miramand, D. Bentley, Concentration and distribution of heavy-metals in tissues of two cephalopods, Eledone cirrhosa and Sepia officinalis, from the French coast of the English-Channel, Mar. Biol. 114 (1992) 407-414.
DOI: 10.1007/bf00350031
Google Scholar
[17]
K. Walsh, R.H. Dunstan, R.N. Murdoch, Differential bioaccumulation of heavy-metals and organopollutants in the soft tissue and shell of the marine gastropod, Austrocochlea constricta, Arch. Environ. Contam. Toxicol. 28 (1995) 35-39.
DOI: 10.1007/bf00213966
Google Scholar
[18]
A. Cravo, M.J. Bebianno, P. Foster, Partitioning of trace metals between soft tissues and shells of Patella aspera, Environ. Intern. 30 (2004) 87-98.
DOI: 10.1016/s0160-4120(03)00154-5
Google Scholar
[19]
L. Hédouin, M. Metian, J.L. Teyssie, S.W. Fowler, R. Fichez, M. Warnau, Allometric relationships in the bioconcentration of heavy metals by the edible tropical clam Gafrarium tumidum, Sci. Total Environ. 366 2006) 154-163.
DOI: 10.1016/j.scitotenv.2005.10.022
Google Scholar
[20]
Y.S. Zver'kova, Use of freshwater mollusc shells for monitoring heavy metal pollution of the Dnieper ecosystem on the territory of Smolensk oblast, Russian J. Ecol. 40 (2009) 443-447.
DOI: 10.1134/s1067413609060113
Google Scholar
[21]
A.C. Andrello, F. Lopes, T.D. Galvao, Mussel shell evaluation as bioindicator for heavy metals, in: A. Deppman, C. Krug, G.S. Zahn, J. Lubian, N. Added, V.S. Timoteo (Eds. ), XXXII Brazilian Workshop on Nuclear Physics, AIP Conference Proceedings, 2010, pp.110-113.
DOI: 10.1063/1.3447998
Google Scholar
[22]
J. Machado, M. Lopes-Lima, Calcification mechanism in freshwater mussels: potential targets for cadmium, Toxicol. Environ. Chem. 93 (2011) 1778-1787.
DOI: 10.1080/02772248.2010.503656
Google Scholar
[23]
G. Libralato, D. Minetto, S. Totaro, I. Micetic, A. Pigozzo, E. Sabbioni, A. Marcomini, A.V. Ghirardini, Embryotoxicity of TiO2 nanoparticles to Mytilus galloprovincialis (Lmk), Mar. Environ. Res. 92 (2013) 71-78.
DOI: 10.1016/j.marenvres.2013.08.015
Google Scholar
[24]
G.A. Liehr, M.L. Zettler, T. Leipe, G. Witt, The ocean quahog Arctica islandica L.: a bioindicator for contaminated sediments, Mar. Biol. 147 (2005) 671-679.
DOI: 10.1007/s00227-005-1612-y
Google Scholar
[25]
B.R. Schone, Artica islandica (Bivalvia): a unique paleoenvironmental archive of the northern North Atlantic Ocean, Global Planetary Change 11 (2013) 199-225.
DOI: 10.1016/j.gloplacha.2013.09.013
Google Scholar
[26]
D.P. Gillikin, F. Dehairs, Uranium in aragonitic marine bivalve shells, Palaeogeogr. Palaeoclim. Palaeoecol. 373 (2013) 60-65.
DOI: 10.1016/j.palaeo.2012.02.028
Google Scholar
[27]
F.A. Ismail, A.Z. Aris, P.A. Latif, Dynamic behaviour of Cd2+ adsorption in equilibrium batch studies by CaCO3-rich Corbicula fluminea shell, Environ. Sci. Pollut. Res. 21 (2014) 344-354.
DOI: 10.1007/s11356-013-1906-4
Google Scholar
[28]
N. Trinkler, M. Labonne, F. Marin, A. Jolivet, M. Bohn, C. Poulain, J.F. Bardeau, C. Paillard, Clam shell repair from the brown ring disease: a study of the organic matrix using confocal Raman micro-spectrometry and WDS microprobe, Anal. Bioanal. Chem. 396 (2010).
DOI: 10.1007/s00216-009-3114-0
Google Scholar
[29]
C. Gundacker, Comparison of heavy metal bioaccumulation in freshwater molluscs of urban river habitats in Vienna, Environ. Pollut. 110 (2000) 61-71.
DOI: 10.1016/s0269-7491(99)00286-9
Google Scholar
[30]
A. Osuna-Mascaro, T. Cruz-Bustos, S. Benhamada, N. Guichard, B. Marie, L. Plasseraud, M. Corneillat, G. Alcaraz, A. Checa, F. Marin, The shell organic matrix of the crossed-lamellar queen conch shell (Strombus gigas), Comp. Biochem. Physiol. B 168 (2014).
DOI: 10.1016/j.cbpb.2013.11.009
Google Scholar
[31]
F. Marin, B. Pokroy, G. Luquet, P. Layrolle, K. De Groot, Protein mapping of calcium carbonate biominerals by immunogold, Biomaterials 28 (2007) 2368-2377.
DOI: 10.1016/j.biomaterials.2007.01.029
Google Scholar
[32]
H.E.A. Tudor, C.C. Gryte, C.C. Harris, Seashells: detoxifying agents for metal-contaminated waters, Water Air Soil Pollut. 173 (2006) 209-242.
DOI: 10.1007/s11270-005-9060-3
Google Scholar
[33]
Y. Liu, C.B. Sun, J. Xu, Y.Z. Li, The use of raw and acid-pretreated bivalve mollusc shells to remove metals from aqueous solutions, J. Hazardous Mater. 168 (2009) 156-162.
DOI: 10.1016/j.jhazmat.2009.02.009
Google Scholar
[34]
Y. Du, F. Lian, L.Y. Zhu, Biosorption of divalent Pb, Cd and Zn on aragonite and calcite mollusc shells, Environ. Pollut. 159 (2011) 1763-1768.
DOI: 10.1016/j.envpol.2011.04.017
Google Scholar
[35]
Y. Du, L.Y. Zhu, G.Q. Shan, Removal of Cd2+ from contaminated water by nano-sized aragonite mollusc shell and the competition of coexisting metal ions, J. Colloid Interface Sci. 367 (2012) 378-382.
DOI: 10.1016/j.jcis.2011.10.023
Google Scholar