[1]
R. Z. Wang, L. Addadi, S. Weiner, Design strategies of sea urchin teeth: structure, composition and micromechanical relations to function, Phil. Trans. R. Soc. Lon. B. 352 (1997) 469-480.
DOI: 10.1098/rstb.1997.0034
Google Scholar
[2]
S. Weiner, Organic matrixlike macromolecules associated with the mineral phase of sea urchin skeletal plates and teeth, J. Exp. Zool. 234 (1985) 7-15.
DOI: 10.1002/jez.1402340103
Google Scholar
[3]
D.J. Veis, T.M. Albinger, J. Clohisy, M. Rahima, B. Sabsay, A. Veis, Matrix proteins of the teeth of the sea urchin Lytechinus variegatus, J. Exp. Zool. 240 (1986) 35-46.
DOI: 10.1002/jez.1402400106
Google Scholar
[4]
K. Märkel, Morphologie der Seeigelzähne II. Die gekielten Zähne der Echinacea (Echinodermata, Echinoiddea), Z. Morph. Tiere BD. 66 (1969) 1-50.
DOI: 10.1007/bf00298712
Google Scholar
[5]
P.U.P.A. Gilbert, F.H. Wilt, Molecular aspects of biomineralization of the echinoderm endoskeleton, Prog. Mol. Subcell. Biol. 52 (2011) 199-223.
DOI: 10.1007/978-3-642-21230-7_7
Google Scholar
[6]
L.H. Hyman, The Invertebrates, Vol. 4: Echinodermata, McGraw-Hill, New York, (1955).
Google Scholar
[7]
C. -P. Chen, J.M. Lawrence, The ultrastructure of the plumula of the tooth of Lytechinus variegatus (Echinodermata: Echinoidea), Acta Zool. 67 (1986) 33-41.
DOI: 10.1111/j.1463-6395.1986.tb00847.x
Google Scholar
[8]
K. Märkel, U. Röser, U. Mackenstedt, M. Klostermann, Ultrastructural investigation of matrix-mediated biomineralization in echinoids (Echinodermata, Echinoida), Zoomorphology. 106 (1986) 232-243.
DOI: 10.1007/bf00312044
Google Scholar
[9]
J.H. Schroeder, E.J. Dwornik, J.J. Papike, Primary protodolomite in echinoid skeletons, Geol. Soc. Am. Bull. 80 (1969) 1613-1616.
DOI: 10.1130/0016-7606(1969)80[1613:ppies]2.0.co;2
Google Scholar
[10]
K. Märkel, P. Gorny, Zur funktionellen Anatomie der Seeigelzähne (Echinodermata, Echinoidea), Z. Morph. Tiere. 75 (1973) 223-242.
DOI: 10.1007/bf00401492
Google Scholar
[11]
A. Veis, Organic matrix-related mineralization of sea urchin spicules, spines, test and teeth, Front. Biosci. 16 (2011) 2540-2560.
DOI: 10.2741/3871
Google Scholar
[12]
Y.R. Ma, S. Weiner, L. Addadi, Mineral deposition and crystal growth in the continuously forming teeth of sea urchins, Adv. Funct. Mater. 17 (2007) 2693 - 2700.
DOI: 10.1002/adfm.200700234
Google Scholar
[13]
C.E. Killian, R.A. Metzler, Y. Gong, T.H. Churchill, I.C. Olson, V. Trubetskoy, M. Christensen, J.H. Fournelle, F. De Carlo, S. Cohen, J. Mahamid, A. Scholl, A. Young, A. Doran, F.H. Wilt, S.N. Coppersmith, P.U.P.A. Gilbert, Self-sharpening mechanism of the sea urchin tooth, Adv. Funct. Mater. 21 (2011).
DOI: 10.1002/adfm.201190003
Google Scholar
[14]
K. Märkel, P. Gorny, K. Abraham, Microarchitecture of sea urchin teeth, Fortschr. Zool. 24 (1977) 103-114.
Google Scholar
[15]
R. Wang, Fracture toughness and interfacial design of a biological fiber-matrix ceramic composite in sea urchin teeth, J. Am. Ceramic Soc. 81 (1998) 1037-1040.
DOI: 10.1111/j.1151-2916.1998.tb02444.x
Google Scholar
[16]
S.R. Stock, J. Barss, T. Dahl, A. Veis, J.D. Almer, X-ray absorption microtomography (microCT) and small beam diffraction mapping of sea urchin teeth, J. Struct. Biol. 139 (2002) 1-12.
DOI: 10.1016/s1047-8477(02)00500-2
Google Scholar
[17]
S.R. Stock, K.I. Ignatiev, T. Dahl, A. Veis, F. De Carlo, Three-dimensional microarchitecture of the plates (primary, secondary, and carinar process) in the developing tooth of Lytechinus variegatus revealed by synchrotron X-ray absorption microtomography (microCT), J. Struct. Biol. 144 (2003).
DOI: 10.1016/j.jsb.2003.09.004
Google Scholar
[18]
J.S. Robach, S.R. Stock, A. Veis, Transmission electron microscopy characterization of macromolecular domain cavities and microstructure of single-crystal calcite tooth plates of the sea urchin Lytechinus variegatus, J. Struct. Biol. 151 (2005).
DOI: 10.1016/j.jsb.2005.04.001
Google Scholar
[19]
Y. Ma, B. Aichmayer, O. Paris, P. Fratzl, A. Meibom, R.A. Metzler, Y. Politi, L. Addadi, P.U.P.A. Gilbert, S. Weiner, The grinding tip of the sea urchin tooth exhibits exquisite control over calcite crystal orientation and Mg distribution, Proc. Natl. Acad. Sci. USA 106 (2009).
DOI: 10.1073/pnas.0810300106
Google Scholar
[20]
J.S. Robach, S.R. Stock, A. Veis, Mapping of magnesium and of different protein fragments in sea urchin teeth via secondary ion mass spectroscopy, J. Struc. Biol. 155 (2006) 87-95.
DOI: 10.1016/j.jsb.2006.03.002
Google Scholar
[21]
The Sea Urchin Genome Sequencing Consortium, The genome of the sea urchin Strongylocentrotus purpuratus, Science. 314 (2006) 941-952.
Google Scholar
[22]
K. Mann, A. Poustka, M. Mann, In-depth, high-accuracy proteomics of sea urchin tooth organic matrix, Proteome Sci. 6 (2008) 33.
DOI: 10.1186/1477-5956-6-33
Google Scholar
[23]
C.E. Killian, L. Croker, F.H. Wilt, SpSM30 gene family expression patterns in embryonic and adult biomineralized tissues of the sea urchin Strongylocentrotus purpuratus, Gene Expr. Patterns 10 (2010)135-139.
DOI: 10.1016/j.gep.2010.01.002
Google Scholar
[24]
K. Alvares, S.N. Dixit, E. Lux, A. Veis, Echinoderm phosphorylated matrix proteins UTMP16 and UTMP19 have different functions in sea urchin tooth mineralization, J. Biol. Chem. 284 (2009) 26149-26160.
DOI: 10.1074/jbc.m109.024018
Google Scholar
[25]
K. Mann, A. Poustka, M. Mann, Phosphoproteomes of Strongylocentrotus purpuratus shell and tooth matrix: Identification of a major acidic sea urchin tooth phosphoprotein, phosphodontin, Proteome Sci. 8 (2010) 6.
DOI: 10.1186/1477-5956-8-6
Google Scholar
[26]
F. Marin, L. Pereira, P. Westbroek, Large-scale fractionation of molluscan shell matrix, Protein Expres. Purif. 23 (2001) 175-179.
DOI: 10.1006/prep.2001.1487
Google Scholar
[27]
J.H. Morrissey, Silver stain for proteins in polyacrylamide gels: A modified procedure with enhanced uniform sensitivity, Anal. Biochem. 117 (1981) 307-310.
DOI: 10.1016/0003-2697(81)90783-1
Google Scholar
[28]
F. Immel, D. Gaspard, A. Marie, N. Guichard, M. Cusack, F. Marin, Shell proteome of rhynchonelliform brachiopods, J. Struct. Biol. 190 (2015) 360-366.
DOI: 10.1016/j.jsb.2015.04.001
Google Scholar
[29]
A. Shevchenko, S. Sunyaev, A. Loboda, A. Shevchenko, P. Bork, W. Ens, K.G. Standing, Charting the proteomes of organisms with unsequenced genomes by MALDI-Quadrupole Time-of-Flight Mass Spectrometry and BLAST homology searching, Anal. Chem. 73 (2001).
DOI: 10.1021/ac0013709
Google Scholar
[30]
B. Habermann, J. Oegema, S. Sunyaev, A. Shevchenko, The power and the limitations of cross-species protein identification by Mass Spectrometry-driven sequence similarity searches, Mol. Cell. Proteomics. 3 (2004) 238-249.
DOI: 10.1074/mcp.m300073-mcp200
Google Scholar
[31]
J. Balmain, B. Hannoyer, E. Lopez, Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction analyses of mineral and organic matrix during heating of mother of pearl (nacre) from the shell of the mollusc Pinctada maxima, J. Biomed. Mater. Res. 48, (1999).
DOI: 10.1002/(sici)1097-4636(1999)48:5<749::aid-jbm22>3.0.co;2-p
Google Scholar
[32]
Y. Dauphin, F. Marin, The compositional analysis of recent cephalopod shell carbohydrates by Fourier transform infrared spectrometry and high performance anion exchange-pulsed amperometric detection, Experientia 51 (1995) 278-283.
DOI: 10.1007/bf01931112
Google Scholar
[33]
J.C. Marxen, M. Hammer, T. Gehrke, W. Becker, Carbohydrates of the organic shell matrix and the shell-forming tissue of the snail Biomphalaria glabrata (Say), Biol. Bull. 194 (1998) 231-240.
DOI: 10.2307/1543052
Google Scholar
[34]
P. Ramos-Silva, S. Benhamada, N. Le Roy, B. Marie, N. Guichard, I. Zanella-Cléon, L. Plasseraud, M. Corneillat, G. Alcaraz, J. Kaandorp, F. Marin, Novel molluskan biomineralization proteins retrieved from proteomics: A case study with Upsalin, ChemBioChem. 13 (2012).
DOI: 10.1002/cbic.201100708
Google Scholar
[35]
N. Trinkler, N. Guichard, M. Labonne, L. Plasseraud, C. Paillard, F. Marin, Variability of shell repair in the manila clam Ruditapes philippinarum affected by the Brown Ring Disease: A microstructural and biochemical study, J. Invertebr. Pathol. 106 (2011).
DOI: 10.1016/j.jip.2010.12.011
Google Scholar
[36]
D. Worms, S. Weiner, Mollusk shell organic matrix: Fourier transform infrared study of the acidic macromolecules, J. Exp. Zool. 237 (1986) 11-20.
DOI: 10.1002/jez.1402370104
Google Scholar
[37]
J.M. Kanold, N. Guichard, F. Immel, L. Plasseraud, M. Corneillat, G. Alcaraz, F. Brümmer, F. Marin, Spine and test skeletal matrices of the Mediterranean sea urchin Arbacia lixula – a comparative approach of their sugar signature, FEBS J. (2015).
DOI: 10.1111/febs.13242
Google Scholar
[38]
S. Naz, H. Kara, S.T.H. Sherazi, A. Aljabour, F.N. Talpur, A green approach for the production of biodiesel from fatty acids of corn deodorizer distillate, RSC Adv. 4 (2014) 48419-48425.
DOI: 10.1039/c4ra08108k
Google Scholar
[39]
E.M. Rivera-Munoz, Hydroxyapatite-based materials: Synthesis and characterization, in: R. Fazel-Rezai, (Ed. ), Biomedical Engineering - Frontiers and Challenges, InTech, (2011), pp.75-98.
Google Scholar
[40]
K. Kawasaki, The SCPP gene repertoire in bony vertebrates and graded differences in mineralized tissues, Dev. Genes Evol. 219 (2009) 147-157.
DOI: 10.1007/s00427-009-0276-x
Google Scholar
[41]
J.M. Kanold, F. Immel, C. Broussard, N. Guichard, L. Plasseraud, M. Corneillat, G. Alcaraz, F. Brümmer, F. Marin, The test skeletal matrix of the black sea urchin Arbacia lixula, Comp. Biochem. Physiol. D. 13 (2015) 24-34.
DOI: 10.1016/j.cbd.2014.12.002
Google Scholar
[42]
D.M. Swift, C.S. Sikes, A.P. Wheeler, Analysis and function of organic matrix from sea urchin tests, J. Exp. Zool. 240 (1986) 65-73.
DOI: 10.1002/jez.1402400109
Google Scholar
[43]
K. Muramoto, H. Kamiya, Analysis of sugar compositions of glycoproteins electroblotted onto PVDF membranes, Nippon Suisan Gakkaishi. 57 (1991) 1121-1126.
DOI: 10.2331/suisan.57.1121
Google Scholar
[44]
M. Venkatesan, R.T. Simpson, Isolation and characterization of spicule proteins from Strongylocentrotus purpuratus, Exp. Cell Res. 166 (1986) 259-264.
DOI: 10.1016/0014-4827(86)90526-4
Google Scholar
[45]
S. Albeck, S. Weiner, L. Addadi, Polysaccharides of intracrystalline glycoproteins modulate calcite crystal growth in vitro, Chem. Eur. J. 2 (1996) 278-284.
DOI: 10.1002/chem.19960020308
Google Scholar
[46]
L. Ameye, G. De Becker, C. Killian, F. Wilt, R. Kemps, S. Kuypers, P. Dubois, Proteins and saccharides of the sea urchin organic matrix of mineralization: Characterization and localization in the spine skeleton, J. Struct. Biol. 134 (2001) 56-66.
DOI: 10.1006/jsbi.2001.4361
Google Scholar
[47]
C. MacKenzie, S. Wilbanks, K. McGrath, Superimposed effect of kinetics and echinoderm glycoproteins on hierarchical growth of calcium carbonate, J. Mater. Chem. 14 (2004) 1238-1244.
DOI: 10.1039/b312126g
Google Scholar
[48]
A. Rao, J.K. Berg, M. Kellermeier, D. Gebauer, Sweet on biomineralization: Effects of carbohydrates on the early stages of calcium carbonate crystallization, Eur. J. Mineral. 26 (2014) 537-552.
DOI: 10.1127/0935-1221/2014/0026-2379
Google Scholar
[49]
P. Ramos-Silva, F. Marin, J. Kaandorp, B. Marie, Biomineralization toolkit: The importance of sample cleaning prior to the characterization of biomineral proteomes, Proc. Natl. Acad. Sci. USA 110 (2013) E2144-E2146.
DOI: 10.1073/pnas.1303657110
Google Scholar
[50]
J.V. Olsen, M. Mann, Improved peptide identification in proteomics by two consecutive stages of mass spectrometric fragmentation, Proc. Natl. Acad. Sci. USA 101 (2004) 13417-13422.
DOI: 10.1073/pnas.0405549101
Google Scholar
[51]
C.E. Killian, F.H. Wilt, Molecular aspects of biomineralization of the echinoderm endoskeleton, Chem. Rev. 108 (2008) 4463-4474.
DOI: 10.1021/cr0782630
Google Scholar
[52]
B.T. Livingston, C.E. Killian, F. Wilt, A. Cameron, M.J. Landrum, O. Ermolaeva, V. Sapojnikov, D.R. Maglott, A.M. Buchanan, C.A. Ettensohn, A genome-wide analysis of biomineralization-related proteins in the sea urchin Strongylocentrotus purpuratus, Dev. Biol. 300 (2006).
DOI: 10.1016/j.ydbio.2006.07.047
Google Scholar
[53]
L. Kalmar, D. Homola, G. Varga, P. Tompa, Structural disorder in proteins brings order to crystal growth in biomineralization, Bone 51 (2012) 528-534.
DOI: 10.1016/j.bone.2012.05.009
Google Scholar
[54]
F. Marin, G. Luquet, B. Marie, D. Medakovic, Molluscan shell proteins: Primary structure, origin, and evolution, Curr. Top. Dev. Biol. 80 (2007) 209-276.
DOI: 10.1016/s0070-2153(07)80006-8
Google Scholar
[55]
S. Sudo, T. Fujikawa, T. Nagakura, T. Ohkubo, K. Sakaguchi, M. Tanaka, K. Nakashima, T. Takahashi, Structures of mollusc shell framework proteins, Nature. 387 (1997) 563-564.
DOI: 10.1038/42391
Google Scholar
[56]
A.V.N. Amerongen, J.G.M. Bolscher, E.C.I. Veerman, Salivary mucins: Protective functions in relation to their diversity, Glycobiol. 5 (1995) 733-740.
DOI: 10.1093/glycob/5.8.733
Google Scholar
[57]
H. Meyer-Lueckel, N. Umland, W. Hopfenmuller, A.M. Kielbassa, Effect of mucin alone and in combination with various dentifrices on in vitro remineralization, Caries Res. 38 (2004) 478-483.
DOI: 10.1159/000079630
Google Scholar
[58]
D.T.J. Littlewood, A.B. Smith, A combined morphological and molecular phylogeny for sea urchins (Echinoidea: Echinodermata), Phil. Trans. R. Soc. Lond. B. 347 (1995) 213-234.
DOI: 10.1098/rstb.1995.0023
Google Scholar