Characterization of the Teeth Skeletal Matrix from Arbacia lixula

Article Preview

Abstract:

The teeth of sea urchins are highly complex composite structures, composed predominantly of high magnesium calcite, and of a minor heterogeneous assemblage of organic macromolecules that are occluded within the mineral. The organic matrix fulfils important functions in mineralization, in addition to giving the mineral phase peculiar mechanical properties, different from that of purely inorganic calcite. Nevertheless, the composition and function of individual components of the organic matrix still remains largely unknown. Up to now, the detailed protein repertoire of teeth from a single sea urchin species (Strongylocentrotus purpuratus, order Camarodonta) was investigated. In this study, we characterized for the first time the teeth skeletal matrix of another sea urchin, Arbacia lixula (order Arbacioida). The acetic acid soluble and acetic acid insoluble matrices, namely ASM and AIM respectively, were extracted and characterized with different biochemical methods including mono-dimensional SDS-PAGE, FT-IR spectroscopy, HPAE-PAD for monosaccharide analysis, and finally, proteomics. In spite of the paucity of peptide data, several of them displayed a high abundance of hydrophobic residues, i.e., alanine, glycine and valine, and of the apolar proline. We assert that the alanine- and proline-rich domains are important features of some of the matrix proteins associated to the teeth of sea urchins. None of the known skeletal matrix proteins from S. purpuratus teeth were identified in the organic matrix of A. lixula teeth. This might suggest major differences in teeth matrix protein repertoires of these two species belonging to orders that diverged in the Mesozoic times.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

168-182

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Z. Wang, L. Addadi, S. Weiner, Design strategies of sea urchin teeth: structure, composition and micromechanical relations to function, Phil. Trans. R. Soc. Lon. B. 352 (1997) 469-480.

DOI: 10.1098/rstb.1997.0034

Google Scholar

[2] S. Weiner, Organic matrixlike macromolecules associated with the mineral phase of sea urchin skeletal plates and teeth, J. Exp. Zool. 234 (1985) 7-15.

DOI: 10.1002/jez.1402340103

Google Scholar

[3] D.J. Veis, T.M. Albinger, J. Clohisy, M. Rahima, B. Sabsay, A. Veis, Matrix proteins of the teeth of the sea urchin Lytechinus variegatus, J. Exp. Zool. 240 (1986) 35-46.

DOI: 10.1002/jez.1402400106

Google Scholar

[4] K. Märkel, Morphologie der Seeigelzähne II. Die gekielten Zähne der Echinacea (Echinodermata, Echinoiddea), Z. Morph. Tiere BD. 66 (1969) 1-50.

DOI: 10.1007/bf00298712

Google Scholar

[5] P.U.P.A. Gilbert, F.H. Wilt, Molecular aspects of biomineralization of the echinoderm endoskeleton, Prog. Mol. Subcell. Biol. 52 (2011) 199-223.

DOI: 10.1007/978-3-642-21230-7_7

Google Scholar

[6] L.H. Hyman, The Invertebrates, Vol. 4: Echinodermata, McGraw-Hill, New York, (1955).

Google Scholar

[7] C. -P. Chen, J.M. Lawrence, The ultrastructure of the plumula of the tooth of Lytechinus variegatus (Echinodermata: Echinoidea), Acta Zool. 67 (1986) 33-41.

DOI: 10.1111/j.1463-6395.1986.tb00847.x

Google Scholar

[8] K. Märkel, U. Röser, U. Mackenstedt, M. Klostermann, Ultrastructural investigation of matrix-mediated biomineralization in echinoids (Echinodermata, Echinoida), Zoomorphology. 106 (1986) 232-243.

DOI: 10.1007/bf00312044

Google Scholar

[9] J.H. Schroeder, E.J. Dwornik, J.J. Papike, Primary protodolomite in echinoid skeletons, Geol. Soc. Am. Bull. 80 (1969) 1613-1616.

DOI: 10.1130/0016-7606(1969)80[1613:ppies]2.0.co;2

Google Scholar

[10] K. Märkel, P. Gorny, Zur funktionellen Anatomie der Seeigelzähne (Echinodermata, Echinoidea), Z. Morph. Tiere. 75 (1973) 223-242.

DOI: 10.1007/bf00401492

Google Scholar

[11] A. Veis, Organic matrix-related mineralization of sea urchin spicules, spines, test and teeth, Front. Biosci. 16 (2011) 2540-2560.

DOI: 10.2741/3871

Google Scholar

[12] Y.R. Ma, S. Weiner, L. Addadi, Mineral deposition and crystal growth in the continuously forming teeth of sea urchins, Adv. Funct. Mater. 17 (2007) 2693 - 2700.

DOI: 10.1002/adfm.200700234

Google Scholar

[13] C.E. Killian, R.A. Metzler, Y. Gong, T.H. Churchill, I.C. Olson, V. Trubetskoy, M. Christensen, J.H. Fournelle, F. De Carlo, S. Cohen, J. Mahamid, A. Scholl, A. Young, A. Doran, F.H. Wilt, S.N. Coppersmith, P.U.P.A. Gilbert, Self-sharpening mechanism of the sea urchin tooth, Adv. Funct. Mater. 21 (2011).

DOI: 10.1002/adfm.201190003

Google Scholar

[14] K. Märkel, P. Gorny, K. Abraham, Microarchitecture of sea urchin teeth, Fortschr. Zool. 24 (1977) 103-114.

Google Scholar

[15] R. Wang, Fracture toughness and interfacial design of a biological fiber-matrix ceramic composite in sea urchin teeth, J. Am. Ceramic Soc. 81 (1998) 1037-1040.

DOI: 10.1111/j.1151-2916.1998.tb02444.x

Google Scholar

[16] S.R. Stock, J. Barss, T. Dahl, A. Veis, J.D. Almer, X-ray absorption microtomography (microCT) and small beam diffraction mapping of sea urchin teeth, J. Struct. Biol. 139 (2002) 1-12.

DOI: 10.1016/s1047-8477(02)00500-2

Google Scholar

[17] S.R. Stock, K.I. Ignatiev, T. Dahl, A. Veis, F. De Carlo, Three-dimensional microarchitecture of the plates (primary, secondary, and carinar process) in the developing tooth of Lytechinus variegatus revealed by synchrotron X-ray absorption microtomography (microCT), J. Struct. Biol. 144 (2003).

DOI: 10.1016/j.jsb.2003.09.004

Google Scholar

[18] J.S. Robach, S.R. Stock, A. Veis, Transmission electron microscopy characterization of macromolecular domain cavities and microstructure of single-crystal calcite tooth plates of the sea urchin Lytechinus variegatus, J. Struct. Biol. 151 (2005).

DOI: 10.1016/j.jsb.2005.04.001

Google Scholar

[19] Y. Ma, B. Aichmayer, O. Paris, P. Fratzl, A. Meibom, R.A. Metzler, Y. Politi, L. Addadi, P.U.P.A. Gilbert, S. Weiner, The grinding tip of the sea urchin tooth exhibits exquisite control over calcite crystal orientation and Mg distribution, Proc. Natl. Acad. Sci. USA 106 (2009).

DOI: 10.1073/pnas.0810300106

Google Scholar

[20] J.S. Robach, S.R. Stock, A. Veis, Mapping of magnesium and of different protein fragments in sea urchin teeth via secondary ion mass spectroscopy, J. Struc. Biol. 155 (2006) 87-95.

DOI: 10.1016/j.jsb.2006.03.002

Google Scholar

[21] The Sea Urchin Genome Sequencing Consortium, The genome of the sea urchin Strongylocentrotus purpuratus, Science. 314 (2006) 941-952.

Google Scholar

[22] K. Mann, A. Poustka, M. Mann, In-depth, high-accuracy proteomics of sea urchin tooth organic matrix, Proteome Sci. 6 (2008) 33.

DOI: 10.1186/1477-5956-6-33

Google Scholar

[23] C.E. Killian, L. Croker, F.H. Wilt, SpSM30 gene family expression patterns in embryonic and adult biomineralized tissues of the sea urchin Strongylocentrotus purpuratus, Gene Expr. Patterns 10 (2010)135-139.

DOI: 10.1016/j.gep.2010.01.002

Google Scholar

[24] K. Alvares, S.N. Dixit, E. Lux, A. Veis, Echinoderm phosphorylated matrix proteins UTMP16 and UTMP19 have different functions in sea urchin tooth mineralization, J. Biol. Chem. 284 (2009) 26149-26160.

DOI: 10.1074/jbc.m109.024018

Google Scholar

[25] K. Mann, A. Poustka, M. Mann, Phosphoproteomes of Strongylocentrotus purpuratus shell and tooth matrix: Identification of a major acidic sea urchin tooth phosphoprotein, phosphodontin, Proteome Sci. 8 (2010) 6.

DOI: 10.1186/1477-5956-8-6

Google Scholar

[26] F. Marin, L. Pereira, P. Westbroek, Large-scale fractionation of molluscan shell matrix, Protein Expres. Purif. 23 (2001) 175-179.

DOI: 10.1006/prep.2001.1487

Google Scholar

[27] J.H. Morrissey, Silver stain for proteins in polyacrylamide gels: A modified procedure with enhanced uniform sensitivity, Anal. Biochem. 117 (1981) 307-310.

DOI: 10.1016/0003-2697(81)90783-1

Google Scholar

[28] F. Immel, D. Gaspard, A. Marie, N. Guichard, M. Cusack, F. Marin, Shell proteome of rhynchonelliform brachiopods, J. Struct. Biol. 190 (2015) 360-366.

DOI: 10.1016/j.jsb.2015.04.001

Google Scholar

[29] A. Shevchenko, S. Sunyaev, A. Loboda, A. Shevchenko, P. Bork, W. Ens, K.G. Standing, Charting the proteomes of organisms with unsequenced genomes by MALDI-Quadrupole Time-of-Flight Mass Spectrometry and BLAST homology searching, Anal. Chem. 73 (2001).

DOI: 10.1021/ac0013709

Google Scholar

[30] B. Habermann, J. Oegema, S. Sunyaev, A. Shevchenko, The power and the limitations of cross-species protein identification by Mass Spectrometry-driven sequence similarity searches, Mol. Cell. Proteomics. 3 (2004) 238-249.

DOI: 10.1074/mcp.m300073-mcp200

Google Scholar

[31] J. Balmain, B. Hannoyer, E. Lopez, Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction analyses of mineral and organic matrix during heating of mother of pearl (nacre) from the shell of the mollusc Pinctada maxima, J. Biomed. Mater. Res. 48, (1999).

DOI: 10.1002/(sici)1097-4636(1999)48:5<749::aid-jbm22>3.0.co;2-p

Google Scholar

[32] Y. Dauphin, F. Marin, The compositional analysis of recent cephalopod shell carbohydrates by Fourier transform infrared spectrometry and high performance anion exchange-pulsed amperometric detection, Experientia 51 (1995) 278-283.

DOI: 10.1007/bf01931112

Google Scholar

[33] J.C. Marxen, M. Hammer, T. Gehrke, W. Becker, Carbohydrates of the organic shell matrix and the shell-forming tissue of the snail Biomphalaria glabrata (Say), Biol. Bull. 194 (1998) 231-240.

DOI: 10.2307/1543052

Google Scholar

[34] P. Ramos-Silva, S. Benhamada, N. Le Roy, B. Marie, N. Guichard, I. Zanella-Cléon, L. Plasseraud, M. Corneillat, G. Alcaraz, J. Kaandorp, F. Marin, Novel molluskan biomineralization proteins retrieved from proteomics: A case study with Upsalin, ChemBioChem. 13 (2012).

DOI: 10.1002/cbic.201100708

Google Scholar

[35] N. Trinkler, N. Guichard, M. Labonne, L. Plasseraud, C. Paillard, F. Marin, Variability of shell repair in the manila clam Ruditapes philippinarum affected by the Brown Ring Disease: A microstructural and biochemical study, J. Invertebr. Pathol. 106 (2011).

DOI: 10.1016/j.jip.2010.12.011

Google Scholar

[36] D. Worms, S. Weiner, Mollusk shell organic matrix: Fourier transform infrared study of the acidic macromolecules, J. Exp. Zool. 237 (1986) 11-20.

DOI: 10.1002/jez.1402370104

Google Scholar

[37] J.M. Kanold, N. Guichard, F. Immel, L. Plasseraud, M. Corneillat, G. Alcaraz, F. Brümmer, F. Marin, Spine and test skeletal matrices of the Mediterranean sea urchin Arbacia lixula – a comparative approach of their sugar signature, FEBS J. (2015).

DOI: 10.1111/febs.13242

Google Scholar

[38] S. Naz, H. Kara, S.T.H. Sherazi, A. Aljabour, F.N. Talpur, A green approach for the production of biodiesel from fatty acids of corn deodorizer distillate, RSC Adv. 4 (2014) 48419-48425.

DOI: 10.1039/c4ra08108k

Google Scholar

[39] E.M. Rivera-Munoz, Hydroxyapatite-based materials: Synthesis and characterization, in: R. Fazel-Rezai, (Ed. ), Biomedical Engineering - Frontiers and Challenges, InTech, (2011), pp.75-98.

Google Scholar

[40] K. Kawasaki, The SCPP gene repertoire in bony vertebrates and graded differences in mineralized tissues, Dev. Genes Evol. 219 (2009) 147-157.

DOI: 10.1007/s00427-009-0276-x

Google Scholar

[41] J.M. Kanold, F. Immel, C. Broussard, N. Guichard, L. Plasseraud, M. Corneillat, G. Alcaraz, F. Brümmer, F. Marin, The test skeletal matrix of the black sea urchin Arbacia lixula, Comp. Biochem. Physiol. D. 13 (2015) 24-34.

DOI: 10.1016/j.cbd.2014.12.002

Google Scholar

[42] D.M. Swift, C.S. Sikes, A.P. Wheeler, Analysis and function of organic matrix from sea urchin tests, J. Exp. Zool. 240 (1986) 65-73.

DOI: 10.1002/jez.1402400109

Google Scholar

[43] K. Muramoto, H. Kamiya, Analysis of sugar compositions of glycoproteins electroblotted onto PVDF membranes, Nippon Suisan Gakkaishi. 57 (1991) 1121-1126.

DOI: 10.2331/suisan.57.1121

Google Scholar

[44] M. Venkatesan, R.T. Simpson, Isolation and characterization of spicule proteins from Strongylocentrotus purpuratus, Exp. Cell Res. 166 (1986) 259-264.

DOI: 10.1016/0014-4827(86)90526-4

Google Scholar

[45] S. Albeck, S. Weiner, L. Addadi, Polysaccharides of intracrystalline glycoproteins modulate calcite crystal growth in vitro, Chem. Eur. J. 2 (1996) 278-284.

DOI: 10.1002/chem.19960020308

Google Scholar

[46] L. Ameye, G. De Becker, C. Killian, F. Wilt, R. Kemps, S. Kuypers, P. Dubois, Proteins and saccharides of the sea urchin organic matrix of mineralization: Characterization and localization in the spine skeleton, J. Struct. Biol. 134 (2001) 56-66.

DOI: 10.1006/jsbi.2001.4361

Google Scholar

[47] C. MacKenzie, S. Wilbanks, K. McGrath, Superimposed effect of kinetics and echinoderm glycoproteins on hierarchical growth of calcium carbonate, J. Mater. Chem. 14 (2004) 1238-1244.

DOI: 10.1039/b312126g

Google Scholar

[48] A. Rao, J.K. Berg, M. Kellermeier, D. Gebauer, Sweet on biomineralization: Effects of carbohydrates on the early stages of calcium carbonate crystallization, Eur. J. Mineral. 26 (2014) 537-552.

DOI: 10.1127/0935-1221/2014/0026-2379

Google Scholar

[49] P. Ramos-Silva, F. Marin, J. Kaandorp, B. Marie, Biomineralization toolkit: The importance of sample cleaning prior to the characterization of biomineral proteomes, Proc. Natl. Acad. Sci. USA 110 (2013) E2144-E2146.

DOI: 10.1073/pnas.1303657110

Google Scholar

[50] J.V. Olsen, M. Mann, Improved peptide identification in proteomics by two consecutive stages of mass spectrometric fragmentation, Proc. Natl. Acad. Sci. USA 101 (2004) 13417-13422.

DOI: 10.1073/pnas.0405549101

Google Scholar

[51] C.E. Killian, F.H. Wilt, Molecular aspects of biomineralization of the echinoderm endoskeleton, Chem. Rev. 108 (2008) 4463-4474.

DOI: 10.1021/cr0782630

Google Scholar

[52] B.T. Livingston, C.E. Killian, F. Wilt, A. Cameron, M.J. Landrum, O. Ermolaeva, V. Sapojnikov, D.R. Maglott, A.M. Buchanan, C.A. Ettensohn, A genome-wide analysis of biomineralization-related proteins in the sea urchin Strongylocentrotus purpuratus, Dev. Biol. 300 (2006).

DOI: 10.1016/j.ydbio.2006.07.047

Google Scholar

[53] L. Kalmar, D. Homola, G. Varga, P. Tompa, Structural disorder in proteins brings order to crystal growth in biomineralization, Bone 51 (2012) 528-534.

DOI: 10.1016/j.bone.2012.05.009

Google Scholar

[54] F. Marin, G. Luquet, B. Marie, D. Medakovic, Molluscan shell proteins: Primary structure, origin, and evolution, Curr. Top. Dev. Biol. 80 (2007) 209-276.

DOI: 10.1016/s0070-2153(07)80006-8

Google Scholar

[55] S. Sudo, T. Fujikawa, T. Nagakura, T. Ohkubo, K. Sakaguchi, M. Tanaka, K. Nakashima, T. Takahashi, Structures of mollusc shell framework proteins, Nature. 387 (1997) 563-564.

DOI: 10.1038/42391

Google Scholar

[56] A.V.N. Amerongen, J.G.M. Bolscher, E.C.I. Veerman, Salivary mucins: Protective functions in relation to their diversity, Glycobiol. 5 (1995) 733-740.

DOI: 10.1093/glycob/5.8.733

Google Scholar

[57] H. Meyer-Lueckel, N. Umland, W. Hopfenmuller, A.M. Kielbassa, Effect of mucin alone and in combination with various dentifrices on in vitro remineralization, Caries Res. 38 (2004) 478-483.

DOI: 10.1159/000079630

Google Scholar

[58] D.T.J. Littlewood, A.B. Smith, A combined morphological and molecular phylogeny for sea urchins (Echinoidea: Echinodermata), Phil. Trans. R. Soc. Lond. B. 347 (1995) 213-234.

DOI: 10.1098/rstb.1995.0023

Google Scholar