[1]
J. Taylor, W.J. Kennedy, A. Hall, The shell structure and mineralogy of the Bivalvia, Part II, Lucinacea–Clavagellacea. Bull Brit Mus Zool 22 (1973) 253–294.
DOI: 10.5962/p.314199
Google Scholar
[2]
B. Marie, C. Joubert, A. Tayale, I. Zanella-Cléon, C. Belliard, N. Cochennec-Loreau, D. Piquemal, F. Marin, Y. Gueguen, C. Montagnani, Different secretory repertoires control the biomineralization processes of prism and nacre deposition of the pearl oyster shell. Proc Natl Acad Sci 109 (2012).
DOI: 10.1073/pnas.1210552109
Google Scholar
[3]
H.A. Lowenstam, S. Weiner, (1989) On Biomineralization. Oxford University Press, New York.
Google Scholar
[4]
M. Suzuki, H. Nagasawa, Mollusk shell structures and their formation mechanism. Can J Zool 91 (2013) 349-366.
DOI: 10.1139/cjz-2012-0333
Google Scholar
[5]
S. Mann (2001) Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry. Oxford University Press, New York.
Google Scholar
[6]
G. Falini, S. Albeck, S. Weiner, L. Addadi, Control of aragonite and calcite polymorphism by mollusk shell macromolecules. Science 271 (1996) 67–69.
DOI: 10.1126/science.271.5245.67
Google Scholar
[7]
S. Berland, O. Delattre, S. Borzeix, Y. Catonne, E. Lopez, Nacre/bone interface changes in durable nacre endosseous implants in sheep. Biomaterials 26 (2005) 2767-2773.
DOI: 10.1016/j.biomaterials.2004.07.019
Google Scholar
[8]
F. Marin, G. Luquet, B. Marie, D. Medakovic, Molluscan shell proteins: primary structure, origin, and evolution. Curr Top Dev Biol 80 (2008) 209–276.
DOI: 10.1016/s0070-2153(07)80006-8
Google Scholar
[9]
F. Marin, N. Le Roy, B. Marie, The formation and mineralization of mollusc shell. Front Biosci 4 (2012) 1099–1125.
Google Scholar
[10]
L. Addadi, D. Joester, F. Nudelman, S. Weiner, Mollusk shell formation: a source of new concepts for understanding biomineralization processes. Chem Rev. 12 (2006) 980–987.
DOI: 10.1002/chem.200500980
Google Scholar
[11]
A. Checa, A. Rodriguez-Navarro, Geometrical and crystallographic constrains determine the self-organisation of the shell microstructures in Unionidae (Bivalvia: Mollusca). Proc Biol Sci 268 (2001) 771-778.
DOI: 10.1098/rspb.2000.1415
Google Scholar
[12]
B. Marie, G. Luquet, J-P. Pais De Barros, N. Guichard, S. Morel, G. Alcaraz, L. Bollache, F. Marin, The shell matrix of the unionid freshwater mussel Unio pictorum (Paleoheterodonta, Unionoida): Involvement of acidic polysaccharides from glycoproteins in nacre mineralization. FEBS J. 274 (2007).
DOI: 10.1111/j.1742-4658.2007.05825.x
Google Scholar
[13]
A. Kouchinsky, Shell microstructures in Early Cambrian molluscs. Acta Palaeontol Pol 45 (2000) 119–150.
Google Scholar
[14]
M.J. Vendrasco, S.M. Porter, A. Kouchinsky, G. Li, C.Z. Fernandez, New data on molluscs and their shell microstructures from the Middle Cambrian Gowers Formation, Australia. Palaeontology 53 (2010) 97–135.
DOI: 10.1111/j.1475-4983.2009.00922.x
Google Scholar
[15]
J.G. Carter, (1990) Skeletal Biomineralization: Patterns, Processes and Evolutionary Trends. Van Nostrand Reinhold, New York.
Google Scholar
[16]
B. Marie, N. Le Roy, A. Marie, L. Dubost, C. Milet, L. Bédouet, M. Becchi, I. Zanella-Cléon, D. Jackson, B. Degnan, G. Luquet, F. Marin, Nacre evolution: A proteomic approach. In MRS Symposium Proceedings; 14–17 April 2009. Edited by Kisailus DEL, Gupta H, Landis W, Zavattieri P. Materials Research Society, San Fransisco (2009).
DOI: 10.1557/proc-1187-kk01-03
Google Scholar
[17]
B. Marie, A. Marie, D.J. Jackson, L. Dubost, B.M. Degnan, C. Milet, F. Marin, Proteomic analysis of the organic matrix of the abalone Haliotis asinina calcified shell. Proteome Sci 8 (2010) 54.
DOI: 10.1186/1477-5956-8-54
Google Scholar
[18]
B. Marie, N. Le Roy, I. Zanella-Cléon, M. Becchi, F. Marin, Molecular evolution of mollusc shell proteins: insights from proteomic analysis of the edible mussel Mytilus. J Mol Evol 72 (2011) 531–546.
DOI: 10.1007/s00239-011-9451-6
Google Scholar
[19]
B. Marie, G. Luquet, L. Bédouet, C. Milet, N. Guichard, D. Medakovic, F. Marin, Nacre calcification in freshwater mussel Unio pictorum: carbonic anhydrase activity and purification of a 95 kDa calcium-binding glycoprotein. ChemBioChem 9 (2008).
DOI: 10.1002/cbic.200800159
Google Scholar
[20]
B. Marie, I. Zanella-Cléon, N. Le Roy, M. Becchi, G. Luquet, F. Marin, Proteomic analysis of the acid-soluble nacre matrix of the bivalve Unio pictorum: detection of novel carbonic anhydrase and putative protease inhibitor proteins. ChemBioChem 11 (2010).
DOI: 10.1002/cbic.201000276
Google Scholar
[21]
P. Ramos-Silva, S. Benhamada, N. Le Roy, B. Marie, N. Guichard, I. Zanella-Cléon, L. Plasseraud, M. Corneillat, G. Alcaraz, J. Kaandorp, F. Marin, Novel molluscan biomineralization proteins retrieved from proteomics: a case study with Upsalin. Chembiochem 13 (2012).
DOI: 10.1002/cbic.201100708
Google Scholar
[22]
S. Berland, Y. Ma, A. Marie, J-P. Andrieu, L. Bédouet, Q. Feng, Proteomic and profile analysis of the proteins laced with aragonite and vaterite mussel Hyriopsis cumingii shell biominerals. Prot. Peptide letters. 20 (2013) 1170-1180.
DOI: 10.2174/0929866511320100012
Google Scholar
[23]
R. Wang, C. Li, J. Stoeckel, G. Moyer, Z. Liu, E. Peatman, Rapid development of molecular resources for a freshwater mussel, Villosa lienosa (Bivalvia: Unionidae), using an RNA-seq-based approach. Freshw. Sci. 31(2012) 695–708.
DOI: 10.1899/11-149.1
Google Scholar
[24]
R.S. Cornman, L.S. Robertson, H. Galbraith, C. Blakeslee, Transcriptomic analysis of the mussel Elliptio complanata identifies candidate stress-response genes and an abundance of novel or noncoding transcripts. PLoS One. 9 (2014) e112420.
DOI: 10.1371/journal.pone.0112420
Google Scholar
[25]
M. Suzuki, K. Saruwatari, T. Kogure, Y. Yamamoto, T. Nishimura, T. Kato, H. Nagasawa, An acidic matrix protein, Pif, is a key macromolecule for nacre formation. Science 325 (2009) 1388–90.
DOI: 10.1126/science.1173793
Google Scholar
[26]
M. Suzuki, A. Iwasima, N. Tsutsui, T. Ohira, T. Kogure, H. Nagasawa, Identification and characterisation of a calcium carbonate-binding protein, blue mussel shell protein (BMSP), from the nacreous layer. ChemBioChem 16 (2011) 278–287.
DOI: 10.1002/cbic.201100317
Google Scholar
[27]
B. Marie, D.J. Jackson, P. Ramos-Silva, I. Zanella-Cléon, N. Guichard, F. Marin, The shell-formaing proteome of Lottia gigantea reveals both deep conservations and lineage-specific novelties. FEBS J 280 (2013) 214-232.
DOI: 10.1111/febs.12062
Google Scholar
[28]
D. Medakovic, Carbonic anhydrase activity and biomineralization process in embryos, larvae and adult blue mussels Mytilus edulis. Hegol Mar Res 54 (2000) 1–6.
DOI: 10.1007/s101520050030
Google Scholar
[29]
S. Tambutté, E. Tambutté, D. Zoccola, N. Caminiti, S. Lotto, A. Moya, D. Allemand, J. Adkins, Characterization and role of carbonic anhydrase in the calcification process of the azooxanthellate coral Tubastrea aurea. Mar Biol 151 (2007) 71–83.
DOI: 10.1007/s00227-006-0452-8
Google Scholar
[30]
D.J. Jackson, L. Macis, J. Reitner, B.M. Degnan, G. Wörheide, Sponge paleogenomics reveals an ancient role for carbonic anhydrase in skeletogenesis. Science 216 (2007) 1893–1895.
DOI: 10.1126/science.1141560
Google Scholar
[31]
K. Mann, B. Macek, J. Olsen, Proteomic analysis of the acid-soluble organic matrix of the chicken calcified eggshell layer. Proteomics. 6 (2006) 3801–3810.
DOI: 10.1002/pmic.200600120
Google Scholar
[32]
H. Miyamoto, T. Miyashita, M. Okushima, S. Nakano, T. Morita, A. Matsushiro, A carbonic anhydrase from the nacreous layer in oyster pearls. Proc Natl Acad Sci. 93 (1996) 9657–9660.
DOI: 10.1073/pnas.93.18.9657
Google Scholar
[33]
S. Sudo, T. Fujikawa, T. Nagakura, T. Ohkubo, K. Sakagushi, M. Tanaka, K. Nakashima, T. Takahashi, Structures of mollusc shell framework proteins. Nature 387 (1997) 563–564.
DOI: 10.1038/42391
Google Scholar
[34]
B. Marie, C. Joubert, A. Tayale, I. Zanella-Cléon, F. Marin, Y. Gueguen, C. Montagnani, MRNP34, a novel methionine-rich protein from the pearl oysters. Amino Acids 5 (2012) 2009–(2017).
DOI: 10.1007/s00726-011-0932-0
Google Scholar
[35]
M. Yano, K. Nagai, K. Morimoto, H. Miyamoto, Shematrin: a family of glycin-rich structural proteins in the shell of the pearl oyster. Comp Biochem Physiol 144 (2006) 254–262.
DOI: 10.1016/j.cbpb.2006.03.004
Google Scholar
[36]
S. Berland, A. Marie, D. Duplat, C. Milet, J-Y. Sire, L. Bédouet, Coupling proteomics and transcriptomics for identification of novel variant forms of mollusc shell proteins: a study with P. margaritifera. ChemBioChem. 12 (2011) 950-961.
DOI: 10.1002/cbic.201000667
Google Scholar
[37]
K. Kawasaki, A.V. Buchanan, K.M. Weiss, Biomineralization in humans: making the hard choices in life. Annu Rev Genet 43 (2009) 119–142.
DOI: 10.1146/annurev-genet-102108-134242
Google Scholar
[38]
C. McDougall, F. Aguilera, B.M. Degnan, Rapid evolution of pearl oyster shell matrix proteins with repetitive, low complexity domains. J R Soc Interface 10 (2013) 20130041.
DOI: 10.1098/rsif.2013.0041
Google Scholar
[39]
L. Treccani, K. Mann, F. Heinemann, M. Fritz, Perlwapin, an abalone nacre protein with three four-disulfide core (whey acidic protein) domains, inhibits the growth of calcium carbonate crystals. Biophys J. 91 (2006) 2601–2608.
DOI: 10.1529/biophysj.106.086108
Google Scholar
[40]
H.L. Liu, S.F. Liu, Y.J. Ge, J. Liu, X.Y. Wang, L.P. Xie, R.Q. Zhang, Z. Wang, Identification and characterization of a biomineralization related gene PFMG1 highly expressed in the mantle of Pinctada fucata. Biochemistry. 46 (2007) 844–851.
DOI: 10.1021/bi061881a
Google Scholar
[41]
L. Bédouet, D. Duplat, A. Marie, L. Dubost, S. Berland, M. Rousseau, C. Milet, E. Lopez, Heterogeneity of proteinase inhibitors in the water-soluble organic matrix from the oyster nacre. Mar Biotechnol. 9 (2007) 437–449.
DOI: 10.1007/s10126-007-7120-y
Google Scholar
[42]
F. Plazzi, M. Passamonti, Towards a molecular phylogeny of mollusks: Bivalves' early evolution as revealed by mitochondrial genes. Mol Phylogenet Evol 57 (2010) 641–657.
DOI: 10.1016/j.ympev.2010.08.032
Google Scholar
[43]
D.J. Jackson, C. McDougall, B. Woodcroft, P. Moase, R.A. Rose, M. Kube, R. Reinhardt, D.S. Rokshar, C. Montagnani, C. Joubert, D. Piquemal, B.M. Degnan, Parallel evolution of nacre building gene sets in molluscs. Mol Biol Evol 27 (2010) 591-608.
DOI: 10.1093/molbev/msp278
Google Scholar