Unveiling the Evolution of Bivalve Nacre Proteins by Shell Proteomics of Unionoidae

Article Preview

Abstract:

The formation of the molluscan shell nacre is regulated to a large extent by a matrix of extracellular macromolecules that are secreted by the shell forming tissue, the mantle. This so called “calcifying matrix” is a complex mixture of proteins and glycoproteins that is assembled and occluded within the mineral phase during the calcification process. While the importance of the calcifying matrix to shell formation has long been appreciated, the molecular basis that dictates nacre formation remains largely uncharacterized.Recent expressed sequence tag (EST) investigations of the freshwater mussels (Elliptio complanata and Villosa leinosa) provide an opportunity to further characterize the proteins in the bivalve shell by a proteomic approach. In this study, we have identified a total of 15 proteins from their nacre insoluble matrices. Few of these proteins, such as Pif, MSI60, Nacrein-like, Shematrin, Kunitz-like containing, Papilin-like, LamG containing, Chitin-binding containing, M-rich and Q-rich proteins, appear to be analogs, if not true homologs, of proteins previously described from the pearl oyster or the edible mussel nacre matrices. This work constitutes a comprehensive EST-based nacre proteomic study of non-pteriomorphid bivalves that concretely gives us the opportunity to describe the molecular basis of deeply conserved nacre biomineralization toolkit within nacreous shell bearing bivalves.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

158-167

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Taylor, W.J. Kennedy, A. Hall, The shell structure and mineralogy of the Bivalvia, Part II, Lucinacea–Clavagellacea. Bull Brit Mus Zool 22 (1973) 253–294.

DOI: 10.5962/p.314199

Google Scholar

[2] B. Marie, C. Joubert, A. Tayale, I. Zanella-Cléon, C. Belliard, N. Cochennec-Loreau, D. Piquemal, F. Marin, Y. Gueguen, C. Montagnani, Different secretory repertoires control the biomineralization processes of prism and nacre deposition of the pearl oyster shell. Proc Natl Acad Sci 109 (2012).

DOI: 10.1073/pnas.1210552109

Google Scholar

[3] H.A. Lowenstam, S. Weiner, (1989) On Biomineralization. Oxford University Press, New York.

Google Scholar

[4] M. Suzuki, H. Nagasawa, Mollusk shell structures and their formation mechanism. Can J Zool 91 (2013) 349-366.

DOI: 10.1139/cjz-2012-0333

Google Scholar

[5] S. Mann (2001) Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry. Oxford University Press, New York.

Google Scholar

[6] G. Falini, S. Albeck, S. Weiner, L. Addadi, Control of aragonite and calcite polymorphism by mollusk shell macromolecules. Science 271 (1996) 67–69.

DOI: 10.1126/science.271.5245.67

Google Scholar

[7] S. Berland, O. Delattre, S. Borzeix, Y. Catonne, E. Lopez, Nacre/bone interface changes in durable nacre endosseous implants in sheep. Biomaterials 26 (2005) 2767-2773.

DOI: 10.1016/j.biomaterials.2004.07.019

Google Scholar

[8] F. Marin, G. Luquet, B. Marie, D. Medakovic, Molluscan shell proteins: primary structure, origin, and evolution. Curr Top Dev Biol 80 (2008) 209–276.

DOI: 10.1016/s0070-2153(07)80006-8

Google Scholar

[9] F. Marin, N. Le Roy, B. Marie, The formation and mineralization of mollusc shell. Front Biosci 4 (2012) 1099–1125.

Google Scholar

[10] L. Addadi, D. Joester, F. Nudelman, S. Weiner, Mollusk shell formation: a source of new concepts for understanding biomineralization processes. Chem Rev. 12 (2006) 980–987.

DOI: 10.1002/chem.200500980

Google Scholar

[11] A. Checa, A. Rodriguez-Navarro, Geometrical and crystallographic constrains determine the self-organisation of the shell microstructures in Unionidae (Bivalvia: Mollusca). Proc Biol Sci 268 (2001) 771-778.

DOI: 10.1098/rspb.2000.1415

Google Scholar

[12] B. Marie, G. Luquet, J-P. Pais De Barros, N. Guichard, S. Morel, G. Alcaraz, L. Bollache, F. Marin, The shell matrix of the unionid freshwater mussel Unio pictorum (Paleoheterodonta, Unionoida): Involvement of acidic polysaccharides from glycoproteins in nacre mineralization. FEBS J. 274 (2007).

DOI: 10.1111/j.1742-4658.2007.05825.x

Google Scholar

[13] A. Kouchinsky, Shell microstructures in Early Cambrian molluscs. Acta Palaeontol Pol 45 (2000) 119–150.

Google Scholar

[14] M.J. Vendrasco, S.M. Porter, A. Kouchinsky, G. Li, C.Z. Fernandez, New data on molluscs and their shell microstructures from the Middle Cambrian Gowers Formation, Australia. Palaeontology 53 (2010) 97–135.

DOI: 10.1111/j.1475-4983.2009.00922.x

Google Scholar

[15] J.G. Carter, (1990) Skeletal Biomineralization: Patterns, Processes and Evolutionary Trends. Van Nostrand Reinhold, New York.

Google Scholar

[16] B. Marie, N. Le Roy, A. Marie, L. Dubost, C. Milet, L. Bédouet, M. Becchi, I. Zanella-Cléon, D. Jackson, B. Degnan, G. Luquet, F. Marin, Nacre evolution: A proteomic approach. In MRS Symposium Proceedings; 14–17 April 2009. Edited by Kisailus DEL, Gupta H, Landis W, Zavattieri P. Materials Research Society, San Fransisco (2009).

DOI: 10.1557/proc-1187-kk01-03

Google Scholar

[17] B. Marie, A. Marie, D.J. Jackson, L. Dubost, B.M. Degnan, C. Milet, F. Marin, Proteomic analysis of the organic matrix of the abalone Haliotis asinina calcified shell. Proteome Sci 8 (2010) 54.

DOI: 10.1186/1477-5956-8-54

Google Scholar

[18] B. Marie, N. Le Roy, I. Zanella-Cléon, M. Becchi, F. Marin, Molecular evolution of mollusc shell proteins: insights from proteomic analysis of the edible mussel Mytilus. J Mol Evol 72 (2011) 531–546.

DOI: 10.1007/s00239-011-9451-6

Google Scholar

[19] B. Marie, G. Luquet, L. Bédouet, C. Milet, N. Guichard, D. Medakovic, F. Marin, Nacre calcification in freshwater mussel Unio pictorum: carbonic anhydrase activity and purification of a 95 kDa calcium-binding glycoprotein. ChemBioChem 9 (2008).

DOI: 10.1002/cbic.200800159

Google Scholar

[20] B. Marie, I. Zanella-Cléon, N. Le Roy, M. Becchi, G. Luquet, F. Marin, Proteomic analysis of the acid-soluble nacre matrix of the bivalve Unio pictorum: detection of novel carbonic anhydrase and putative protease inhibitor proteins. ChemBioChem 11 (2010).

DOI: 10.1002/cbic.201000276

Google Scholar

[21] P. Ramos-Silva, S. Benhamada, N. Le Roy, B. Marie, N. Guichard, I. Zanella-Cléon, L. Plasseraud, M. Corneillat, G. Alcaraz, J. Kaandorp, F. Marin, Novel molluscan biomineralization proteins retrieved from proteomics: a case study with Upsalin. Chembiochem 13 (2012).

DOI: 10.1002/cbic.201100708

Google Scholar

[22] S. Berland, Y. Ma, A. Marie, J-P. Andrieu, L. Bédouet, Q. Feng, Proteomic and profile analysis of the proteins laced with aragonite and vaterite mussel Hyriopsis cumingii shell biominerals. Prot. Peptide letters. 20 (2013) 1170-1180.

DOI: 10.2174/0929866511320100012

Google Scholar

[23] R. Wang, C. Li, J. Stoeckel, G. Moyer, Z. Liu, E. Peatman, Rapid development of molecular resources for a freshwater mussel, Villosa lienosa (Bivalvia: Unionidae), using an RNA-seq-based approach. Freshw. Sci. 31(2012) 695–708.

DOI: 10.1899/11-149.1

Google Scholar

[24] R.S. Cornman, L.S. Robertson, H. Galbraith, C. Blakeslee, Transcriptomic analysis of the mussel Elliptio complanata identifies candidate stress-response genes and an abundance of novel or noncoding transcripts. PLoS One. 9 (2014) e112420.

DOI: 10.1371/journal.pone.0112420

Google Scholar

[25] M. Suzuki, K. Saruwatari, T. Kogure, Y. Yamamoto, T. Nishimura, T. Kato, H. Nagasawa, An acidic matrix protein, Pif, is a key macromolecule for nacre formation. Science 325 (2009) 1388–90.

DOI: 10.1126/science.1173793

Google Scholar

[26] M. Suzuki, A. Iwasima, N. Tsutsui, T. Ohira, T. Kogure, H. Nagasawa, Identification and characterisation of a calcium carbonate-binding protein, blue mussel shell protein (BMSP), from the nacreous layer. ChemBioChem 16 (2011) 278–287.

DOI: 10.1002/cbic.201100317

Google Scholar

[27] B. Marie, D.J. Jackson, P. Ramos-Silva, I. Zanella-Cléon, N. Guichard, F. Marin, The shell-formaing proteome of Lottia gigantea reveals both deep conservations and lineage-specific novelties. FEBS J 280 (2013) 214-232.

DOI: 10.1111/febs.12062

Google Scholar

[28] D. Medakovic, Carbonic anhydrase activity and biomineralization process in embryos, larvae and adult blue mussels Mytilus edulis. Hegol Mar Res 54 (2000) 1–6.

DOI: 10.1007/s101520050030

Google Scholar

[29] S. Tambutté, E. Tambutté, D. Zoccola, N. Caminiti, S. Lotto, A. Moya, D. Allemand, J. Adkins, Characterization and role of carbonic anhydrase in the calcification process of the azooxanthellate coral Tubastrea aurea. Mar Biol 151 (2007) 71–83.

DOI: 10.1007/s00227-006-0452-8

Google Scholar

[30] D.J. Jackson, L. Macis, J. Reitner, B.M. Degnan, G. Wörheide, Sponge paleogenomics reveals an ancient role for carbonic anhydrase in skeletogenesis. Science 216 (2007) 1893–1895.

DOI: 10.1126/science.1141560

Google Scholar

[31] K. Mann, B. Macek, J. Olsen, Proteomic analysis of the acid-soluble organic matrix of the chicken calcified eggshell layer. Proteomics. 6 (2006) 3801–3810.

DOI: 10.1002/pmic.200600120

Google Scholar

[32] H. Miyamoto, T. Miyashita, M. Okushima, S. Nakano, T. Morita, A. Matsushiro, A carbonic anhydrase from the nacreous layer in oyster pearls. Proc Natl Acad Sci. 93 (1996) 9657–9660.

DOI: 10.1073/pnas.93.18.9657

Google Scholar

[33] S. Sudo, T. Fujikawa, T. Nagakura, T. Ohkubo, K. Sakagushi, M. Tanaka, K. Nakashima, T. Takahashi, Structures of mollusc shell framework proteins. Nature 387 (1997) 563–564.

DOI: 10.1038/42391

Google Scholar

[34] B. Marie, C. Joubert, A. Tayale, I. Zanella-Cléon, F. Marin, Y. Gueguen, C. Montagnani, MRNP34, a novel methionine-rich protein from the pearl oysters. Amino Acids 5 (2012) 2009–(2017).

DOI: 10.1007/s00726-011-0932-0

Google Scholar

[35] M. Yano, K. Nagai, K. Morimoto, H. Miyamoto, Shematrin: a family of glycin-rich structural proteins in the shell of the pearl oyster. Comp Biochem Physiol 144 (2006) 254–262.

DOI: 10.1016/j.cbpb.2006.03.004

Google Scholar

[36] S. Berland, A. Marie, D. Duplat, C. Milet, J-Y. Sire, L. Bédouet, Coupling proteomics and transcriptomics for identification of novel variant forms of mollusc shell proteins: a study with P. margaritifera. ChemBioChem. 12 (2011) 950-961.

DOI: 10.1002/cbic.201000667

Google Scholar

[37] K. Kawasaki, A.V. Buchanan, K.M. Weiss, Biomineralization in humans: making the hard choices in life. Annu Rev Genet 43 (2009) 119–142.

DOI: 10.1146/annurev-genet-102108-134242

Google Scholar

[38] C. McDougall, F. Aguilera, B.M. Degnan, Rapid evolution of pearl oyster shell matrix proteins with repetitive, low complexity domains. J R Soc Interface 10 (2013) 20130041.

DOI: 10.1098/rsif.2013.0041

Google Scholar

[39] L. Treccani, K. Mann, F. Heinemann, M. Fritz, Perlwapin, an abalone nacre protein with three four-disulfide core (whey acidic protein) domains, inhibits the growth of calcium carbonate crystals. Biophys J. 91 (2006) 2601–2608.

DOI: 10.1529/biophysj.106.086108

Google Scholar

[40] H.L. Liu, S.F. Liu, Y.J. Ge, J. Liu, X.Y. Wang, L.P. Xie, R.Q. Zhang, Z. Wang, Identification and characterization of a biomineralization related gene PFMG1 highly expressed in the mantle of Pinctada fucata. Biochemistry. 46 (2007) 844–851.

DOI: 10.1021/bi061881a

Google Scholar

[41] L. Bédouet, D. Duplat, A. Marie, L. Dubost, S. Berland, M. Rousseau, C. Milet, E. Lopez, Heterogeneity of proteinase inhibitors in the water-soluble organic matrix from the oyster nacre. Mar Biotechnol. 9 (2007) 437–449.

DOI: 10.1007/s10126-007-7120-y

Google Scholar

[42] F. Plazzi, M. Passamonti, Towards a molecular phylogeny of mollusks: Bivalves' early evolution as revealed by mitochondrial genes. Mol Phylogenet Evol 57 (2010) 641–657.

DOI: 10.1016/j.ympev.2010.08.032

Google Scholar

[43] D.J. Jackson, C. McDougall, B. Woodcroft, P. Moase, R.A. Rose, M. Kube, R. Reinhardt, D.S. Rokshar, C. Montagnani, C. Joubert, D. Piquemal, B.M. Degnan, Parallel evolution of nacre building gene sets in molluscs. Mol Biol Evol 27 (2010) 591-608.

DOI: 10.1093/molbev/msp278

Google Scholar