Design and Manufacturing of Variable Angle Tow Laminate

Article Preview

Abstract:

Variable angle tow (VAT) laminates have shown enhanced stiffness/strength performance compared to conventional straight fiber laminates. Employment of VAT allows utilizing variable stiffness design of composite structure, thus it widens the design possibilities. As a result, composite structure with improved mechanical characteristics can be manufactured. The main aims of the current study are to give an overview on methods and algorithms used for analysis and design of VAT laminates, and to develop technology and equipment for manufacturing laminate with improved structural performance. In order to improve the accuracy of the compaction process, a set of experiments were carried out using a simple testing device. For measuring the compaction force, a pneumatic cylinder, pressure regulator and digital manometer were used. The temperature of the consolidation area and the heat distribution were screened with the thermal camera. Infrared heater was used as a heating source. Material used in the experiment was carbon fiber reinforced polyamide.Findings show that in addition to the main parameters – the compaction force and temperature, there are many minor factors, such as the compaction wheel diameter, material and surface roughness of the compaction roller, the material and surface roughness of the mold and the pretension in the laminating tape and also the laminating speed, all influence the quality of the final product.Key words: Advanced Fiber Placement Technology, Automated Fiber Placement, Automated Tape Laying, Fiber Reinforced Composites, Laminates

You might also be interested in these eBooks

Info:

Periodical:

Pages:

59-64

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Guo, M. Ruess, Z. Gürdal, A contact extended isogeometric layerwise approach for the buckling analysis of delaminated composites. Composite Structures. 2014, 16, 55-66.

DOI: 10.1016/j.compstruct.2014.05.006

Google Scholar

[2] A. Khani, M. M. Abdalla, Z. Gürdal, Optimum tailoring of fibre-steered longitudinally stiffened cylinders, Composite Structures, 2015, 122, 343-351.

DOI: 10.1016/j.compstruct.2014.11.071

Google Scholar

[3] J. Sliseris, K. Rocens, Optimal design of composite plates with discrete variable stiffness. Composite Structures, 2013, 98, 15-23.

DOI: 10.1016/j.compstruct.2012.11.015

Google Scholar

[4] J. Sliseris, G. Frolovs, K. Rocens, V. Goremikins, Optimal Design of GFRP-Plywood Variable Stiffness Plate. Procedia Engineering, 2013, 57, 1060-1069.

DOI: 10.1016/j.proeng.2013.04.134

Google Scholar

[5] J. Sliseris, H. Andrä, M. Kabel, B. Dix, B. Plinke, O. Wirjadi, G. Frolovs, Numerical prediction of the stiffness and strength of medium density fiberboards. Mechanics of Materials, 2014, 79, 73-84.

DOI: 10.1016/j.mechmat.2014.08.005

Google Scholar

[6] J. Kers, J. Majak. Modelling a new composite from a recycled GFRP. In: Mechanics of Composite Materials, 2008, 44(6), pp.623-632.

DOI: 10.1007/s11029-009-9050-4

Google Scholar

[7] H. Herranen, O. Pabut, M. Eerme, J. Majak, M. Pohlak, J. Kers, M. Saarna, G. Allikas, A. Aruniit. Design and Testing of Sandwich Structures with Different Core Materials. Materials Science-Medziagotyra, 2012, 18, 1, 45-50.

DOI: 10.5755/j01.ms.18.1.1340

Google Scholar

[8] Majak, J.; Shvartsman, B.; Kirs, M.; Pohlak, M.; Herranen, H. (2015). Convergence theorem for the Haar wavelet based discretization method. Composite Structures, 126, 227 - 232.

DOI: 10.1016/j.compstruct.2015.02.050

Google Scholar

[9] Majak, J.; Pohlak, M.; Eerme, M. (2009). Application of the Haar Wavelet based discretization technique to orthotropic plate and shell problems. Mechanics of Composite Materials, 45(6), 631 - 642.

DOI: 10.1007/s11029-010-9119-0

Google Scholar

[10] Karjust, K.; Pohlak, M.; Majak, J. (2010). Technology Route Planning of Large Composite Parts. International Journal of Material Forming, 3(Suppl: 1), 631 - 634.

DOI: 10.1007/s12289-010-0849-2

Google Scholar

[11] Kers, J.; Majak, J.; Goljandin, D.; Gregor, A.; Malmstein, M.; Vilsaar, K. (2010). Extremes of apparent and tap densities of recovered GFRP filler materials. Composite Structures, 92(9), 2097 - 2101.

DOI: 10.1016/j.compstruct.2009.10.003

Google Scholar

[12] Majak, J.; Pohlak, M. (2010). Decomposition method for solving optimal material orientation problems. Composite Structures, 92(8), 1839 - 1845.

DOI: 10.1016/j.compstruct.2010.01.015

Google Scholar

[13] Majak, J.; Pohlak, M. (2010). Optimal material orientation of linear and non-linear elastic 3D anisotropic materials. Meccanica, 45(5), 671 - 680.

DOI: 10.1007/s11012-009-9262-7

Google Scholar

[14] http: /www. coriolis-composites. com/ (11. 05. 2015).

Google Scholar

[15] Pitchumani, R., Don, R. C., Gillespie, J. W., Ranganathan, S., Analysis of On-Line Consolidation during Thermoplastic Tow-Placement Process, ASME Heat Transfer Division, New York, 1994, 289, 223-239.

Google Scholar

[16] Lee, W. I., Springer, G. S., A Model for the Manufacturing Process of Thermoplastic Matrix Composites, Journal of Composite Materials, 1987, 26, 2348-2410.

Google Scholar

[17] Beyeler, E. P., Güçeri, S. I., Thermal Analysis of Laser-Assisted Thermoplastic-Matrix Composite Tape Consolidation, ASME Journal of Heat Transfer, 1988, 110: 424-430.

DOI: 10.1115/1.3250502

Google Scholar

[18] Endres M., Developments in Thermoplastic Filament Winding, 22th International SAMPE Technical Conference, Boston, (1990).

Google Scholar

[19] Calhoun D. R., Modeling the On-line Consolidation Processing of Thermoplastic Filament Winding, SME Fabricating Composites, Arlington, (1990).

Google Scholar

[20] Werdermann, C., Friedrich, K., Cirino, M., Pipes, R. B., Design and Fabrication of an On-Line Consolidation Facility for Thermoplastic Composites, Journal of Thermoplastic Composite Materials, 2, 293-306, (1989).

DOI: 10.1177/089270578900200404

Google Scholar