[1]
Y. Guo, M. Ruess, Z. Gürdal, A contact extended isogeometric layerwise approach for the buckling analysis of delaminated composites. Composite Structures. 2014, 16, 55-66.
DOI: 10.1016/j.compstruct.2014.05.006
Google Scholar
[2]
A. Khani, M. M. Abdalla, Z. Gürdal, Optimum tailoring of fibre-steered longitudinally stiffened cylinders, Composite Structures, 2015, 122, 343-351.
DOI: 10.1016/j.compstruct.2014.11.071
Google Scholar
[3]
J. Sliseris, K. Rocens, Optimal design of composite plates with discrete variable stiffness. Composite Structures, 2013, 98, 15-23.
DOI: 10.1016/j.compstruct.2012.11.015
Google Scholar
[4]
J. Sliseris, G. Frolovs, K. Rocens, V. Goremikins, Optimal Design of GFRP-Plywood Variable Stiffness Plate. Procedia Engineering, 2013, 57, 1060-1069.
DOI: 10.1016/j.proeng.2013.04.134
Google Scholar
[5]
J. Sliseris, H. Andrä, M. Kabel, B. Dix, B. Plinke, O. Wirjadi, G. Frolovs, Numerical prediction of the stiffness and strength of medium density fiberboards. Mechanics of Materials, 2014, 79, 73-84.
DOI: 10.1016/j.mechmat.2014.08.005
Google Scholar
[6]
J. Kers, J. Majak. Modelling a new composite from a recycled GFRP. In: Mechanics of Composite Materials, 2008, 44(6), pp.623-632.
DOI: 10.1007/s11029-009-9050-4
Google Scholar
[7]
H. Herranen, O. Pabut, M. Eerme, J. Majak, M. Pohlak, J. Kers, M. Saarna, G. Allikas, A. Aruniit. Design and Testing of Sandwich Structures with Different Core Materials. Materials Science-Medziagotyra, 2012, 18, 1, 45-50.
DOI: 10.5755/j01.ms.18.1.1340
Google Scholar
[8]
Majak, J.; Shvartsman, B.; Kirs, M.; Pohlak, M.; Herranen, H. (2015). Convergence theorem for the Haar wavelet based discretization method. Composite Structures, 126, 227 - 232.
DOI: 10.1016/j.compstruct.2015.02.050
Google Scholar
[9]
Majak, J.; Pohlak, M.; Eerme, M. (2009). Application of the Haar Wavelet based discretization technique to orthotropic plate and shell problems. Mechanics of Composite Materials, 45(6), 631 - 642.
DOI: 10.1007/s11029-010-9119-0
Google Scholar
[10]
Karjust, K.; Pohlak, M.; Majak, J. (2010). Technology Route Planning of Large Composite Parts. International Journal of Material Forming, 3(Suppl: 1), 631 - 634.
DOI: 10.1007/s12289-010-0849-2
Google Scholar
[11]
Kers, J.; Majak, J.; Goljandin, D.; Gregor, A.; Malmstein, M.; Vilsaar, K. (2010). Extremes of apparent and tap densities of recovered GFRP filler materials. Composite Structures, 92(9), 2097 - 2101.
DOI: 10.1016/j.compstruct.2009.10.003
Google Scholar
[12]
Majak, J.; Pohlak, M. (2010). Decomposition method for solving optimal material orientation problems. Composite Structures, 92(8), 1839 - 1845.
DOI: 10.1016/j.compstruct.2010.01.015
Google Scholar
[13]
Majak, J.; Pohlak, M. (2010). Optimal material orientation of linear and non-linear elastic 3D anisotropic materials. Meccanica, 45(5), 671 - 680.
DOI: 10.1007/s11012-009-9262-7
Google Scholar
[14]
http: /www. coriolis-composites. com/ (11. 05. 2015).
Google Scholar
[15]
Pitchumani, R., Don, R. C., Gillespie, J. W., Ranganathan, S., Analysis of On-Line Consolidation during Thermoplastic Tow-Placement Process, ASME Heat Transfer Division, New York, 1994, 289, 223-239.
Google Scholar
[16]
Lee, W. I., Springer, G. S., A Model for the Manufacturing Process of Thermoplastic Matrix Composites, Journal of Composite Materials, 1987, 26, 2348-2410.
Google Scholar
[17]
Beyeler, E. P., Güçeri, S. I., Thermal Analysis of Laser-Assisted Thermoplastic-Matrix Composite Tape Consolidation, ASME Journal of Heat Transfer, 1988, 110: 424-430.
DOI: 10.1115/1.3250502
Google Scholar
[18]
Endres M., Developments in Thermoplastic Filament Winding, 22th International SAMPE Technical Conference, Boston, (1990).
Google Scholar
[19]
Calhoun D. R., Modeling the On-line Consolidation Processing of Thermoplastic Filament Winding, SME Fabricating Composites, Arlington, (1990).
Google Scholar
[20]
Werdermann, C., Friedrich, K., Cirino, M., Pipes, R. B., Design and Fabrication of an On-Line Consolidation Facility for Thermoplastic Composites, Journal of Thermoplastic Composite Materials, 2, 293-306, (1989).
DOI: 10.1177/089270578900200404
Google Scholar