Direct CVD Growth of Multi-Layered Graphene Closed Shells around Alumina Nanofibers

Article Preview

Abstract:

In this work, a catalyst-free direct deposition of multi-layered graphene closed shells around highly aligned alumina nanofibers with aspect ratio of 107 is demonstrated for the first time. A single – step chemical vapor deposition process of specified parameters was used for development of hybrid structures of carbon shells around the core alumina nanofibers. Transmission electron microscopy and Raman spectroscopy were used to confirm formation of graphene layers and to understand the morphology of the various structures. The developed routine for growth of peculiar carbon nanostructures opens new opportunities for deposition of the tailored carbon structures on dielectric substrates.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

77-80

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Ismach, C. Druzgalski, S. Penwell, A. Schwartzberg, M. Zheng, A. Javey, J. Bokor, Y. Zhang, Direct Chemical Vapor Deposition of Graphene on Dielectric Surfaces, Nano Lett. 10 (2010) 1542-1548.

DOI: 10.1021/nl9037714

Google Scholar

[2] M.H. Rümmeli, A. Bachmatiuk, A. Scott, F. Borrnert, J.H. Warner, et al. Direct low temperature nano-graphene synthesis over a dielectric insulator, ACS Nano 4 (2010) 4206.

DOI: 10.1021/nn100971s

Google Scholar

[3] R. Muñoz, C. Gómez-Aleixandre, Review of CVD Synthesis of Graphene, Chem. Vap. Deposition 19 (2013) 297-322.

DOI: 10.1002/cvde.201300051

Google Scholar

[4] S. Bhaviripudi, X. Jia, M.S. Dresselhaus, J. Kong, Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst, Nano Lett. 10 (2010) 4128-33.

DOI: 10.1021/nl102355e

Google Scholar

[5] T. Lin, F. Huang, D. Wan, H. Bi, X. Xie, M. Jiang, Self-regulating homogenous growth of high-quality graphene on Co–Cu composite substrate for layer control, Nanoscale 5 (2013) 5847-53.

DOI: 10.1039/c3nr33124e

Google Scholar

[6] C. Yang, H. Bi, D. Wan, F. Huang, X. Xie, M. Jiang, Direct PECVD growth of vertically erected graphene walls on dielectric substrates as excellent multifunctional electrodes, J. Mater. Chem. A 1 (2013) 770-5.

DOI: 10.1039/c2ta00234e

Google Scholar

[7] M. Aghayan, I. Hussainova, M. Gasik, M. Kutuzov, M. Friman, Coupled thermal analysis of novel alumina nanofibers with ultrahigh aspect ratio, Thermochim. Acta 574 (2013) 140-144.

DOI: 10.1016/j.tca.2013.10.010

Google Scholar

[8] R. Ivanov, I. Hussainova, M. Aghayan, M. Drozdova, D. Perez-Coll, M.A. Rodriguez, F. Rubio-Marcos, Graphene encapsulated oxide nanofibers as a novel type of nanofillers for electroconductive ceramics, Materials Letters (submitted) (2015).

DOI: 10.1016/j.jeurceramsoc.2015.06.011

Google Scholar

[9] A.C. Ferrari, D.M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene, Nat. Nanotechnol. 8 (2013) 235-246.

DOI: 10.1038/nnano.2013.46

Google Scholar

[10] L. Bokobza, J. -L. Bruneel, M. Couzi, Raman spectroscopic investigation of carbon-based materials and their composites. Comparison between carbon nanotubes and carbon black, Chem. Phys. Lett. 590 (2013) 153-159.

DOI: 10.1016/j.cplett.2013.10.071

Google Scholar

[11] C. Casiraghi, A. Hartschuh, H. Qian, S. Piscanec, C. Georgi, A. Fasoli, K.S. Novoselov, D.M. Basko, A.C. Ferrari, Raman Spectroscopy of Graphene Edges, Nano Lett. 9 (2009) 1433-1441.

DOI: 10.1021/nl8032697

Google Scholar