Processing of ZrC-TiC Composites by SPS

Article Preview

Abstract:

ZrC – TiC composites containing 20 wt.% TiC, along with and without 0.2 wt.% graphite were prepared by spark plasma sintering (SPS) at temperatures between 1600 - 1900 °C for 10 min under pressure up to 100 MPa. The addition of free carbon tends to reduce the appearance of tertiary phases in the microstructure according to scanning electron microscope (SEM) images. However, free carbon also reduced the mechanical properties of Vickers’ hardness and fracture toughness of the composites. SPS data showed when pressure was increased to 100 MPa, evident grain growth started to occur at a temperature as low as 1600 °C resulting in relative density > 100%. Samples produced at 1600 °C, but with maximum allowable pressure according to the SPS machine, yielded samples with greater hardness and fracture toughness compared to samples produced at 1900 °C.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

94-99

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I. Hussainova, N. Voltšihhin, E. Cura and S. -P. Hannula, Densification and characterization of spark plasma sintered ZrC–ZrO2 composites. Materials Science and Engineering: A. 597: (2014) pp.75-81.

DOI: 10.1016/j.msea.2013.12.058

Google Scholar

[2] S.E. Landwehr, G.E. Hilmas, W.G. Fahrenholtz and I.G. Talmy, Processing of ZrC–Mo Cermets for High Temperature Applications, Part II: Pressureless Sintering and Mechanical Properties. Journal of the American Ceramic Society. 91(3): (2008).

DOI: 10.1111/j.1551-2916.2007.02231.x

Google Scholar

[3] C.B. P. Barnier, F. Thevenot, Hot-pressing kinetics of zirconium carbide. Journal of Material Science. 21: (1986) pp.2547-2552.

DOI: 10.1007/bf01114305

Google Scholar

[4] M. Umalas, I. Hussainova, V. Reedo, D. -L. Young, E. Cura, S. -P. Hannula, R. Lõhmus and A. Lõhmus, Combined sol–gel and carbothermal synthesis of ZrC–TiC powders for composites. Materials Chemistry and Physics. 153: (2015) pp.301-306.

DOI: 10.1016/j.matchemphys.2015.01.017

Google Scholar

[5] D.L. Yung, L. Kollo, I. Hussainova and A. Žikin, Reactive Sintering of ZrC-TiC Composites. Key Engineering Materials. 527: (2012) pp.20-25.

DOI: 10.4028/www.scientific.net/kem.527.20

Google Scholar

[6] S.E. Landwehr, G.E. Hilmas, W.G. Fahrenholtz and I.G. Talmy, Processing of ZrC?Mo Cermets for High-Temperature Applications, Part I: Chemical Interactions in the ZrC?Mo System. Journal of the American Ceramic Society. 90(7): (2007) p.1998-(2002).

DOI: 10.1111/j.1551-2916.2007.01667.x

Google Scholar

[7] S.E. Landwehr, G.E. Hilmas, W.G. Fahrenholtz, I.G. Talmy and S.G. DiPietro, Microstructure and mechanical characterization of ZrC–Mo cermets produced by hot isostatic pressing. Materials Science and Engineering: A. 497(1-2): (2008) pp.79-86.

DOI: 10.1016/j.msea.2008.07.017

Google Scholar

[8] X. Zhang, N. Liu and C. Rong, Microstructure and fracture toughness of TiC–ZrC–WC–Mo–Ni cermets. International Journal of Refractory Metals and Hard Materials. 26(4): (2008) pp.346-356.

DOI: 10.1016/j.ijrmhm.2007.08.008

Google Scholar

[9] Y. Li, H. Katsui and T. Goto, Spark plasma sintering of TiC–ZrC composites. Ceramics International. 41(5): (2015) pp.7103-7108.

DOI: 10.1016/j.ceramint.2015.02.019

Google Scholar

[10] S. Liu, W. Hu, J. Xiang, F. Wen, B. Xu, D. Yu, J. He, Y. Tian and Z. Liu, Mechanical properties of nanocrystalline TiC–ZrC solid solutions fabricated by spark plasma sintering. Ceramics International. 40(7): (2014) pp.10517-10522.

DOI: 10.1016/j.ceramint.2014.03.024

Google Scholar

[11] D. Sciti, S. Guicciardi and M. Nygren, Spark plasma sintering and mechanical behaviour of ZrC-based composites. Scripta Materialia. 59(6): (2008) pp.638-641.

DOI: 10.1016/j.scriptamat.2008.05.026

Google Scholar

[12] V.I. Razumovskiy, A.V. Ruban, J. Odqvist, D. Dilner and P.A. Korzhavyi, Effect of carbon vacancies on thermodynamic properties of TiC–ZrC mixed carbides. Computer Coupling of Phase Diagrams and Thermochemistry. 46: (2014) pp.87-91.

DOI: 10.1016/j.calphad.2014.02.005

Google Scholar

[13] M.H. Bocanegra-Bernal, Hot Isostatic Pressing (HIP) technology and its applications to metals and ceramics. Journal of Material Science. 39: (2004) pp.6399-6420.

DOI: 10.1023/b:jmsc.0000044878.11441.90

Google Scholar

[14] L. Zhao, D. Jia, X. Duan, Z. Yang and Y. Zhou, Pressureless sintering of ZrC-based ceramics by enhancing powder sinterability. International Journal of Refractory Metals and Hard Materials. 29(4): (2011) pp.516-521.

DOI: 10.1016/j.ijrmhm.2011.03.001

Google Scholar

[15] F. Sergejev, M. Antonov; Comparative study fracture toughness cermet and composites. Proceedings of Estonian Academia. 12(4): (2006) pp.388-398.

Google Scholar

[16] S. -K. Sun, G. -J. Zhang, W. -W. Wu, J. -X. Liu, T. Suzuki and Y. Sakka, Reactive spark plasma sintering of ZrC and HfC ceramics with fine microstructures. Scripta Materialia. 69(2): (2013) pp.139-142.

DOI: 10.1016/j.scriptamat.2013.02.017

Google Scholar

[17] R.B. Acicbe and G. Goller, Densification behavior and mechanical properties of spark plasma-sintered ZrC–TiC and ZrC–TiC–CNT composites. Journal of Materials Science. 48(6): (2012) pp.2388-2393.

DOI: 10.1007/s10853-012-7024-8

Google Scholar

[18] I. Borgh, P. Hedström, T. Persson, S. Norgren, A. Borgenstam, J. Ågren and J. Odqvist, Microstructure, grain size distribution and grain shape in WC–Co alloys sintered at different carbon activities. International Journal of Refractory Metals and Hard Materials. 43: (2014).

DOI: 10.1016/j.ijrmhm.2013.12.007

Google Scholar