[1]
I. Hussainova, N. Voltšihhin, E. Cura and S. -P. Hannula, Densification and characterization of spark plasma sintered ZrC–ZrO2 composites. Materials Science and Engineering: A. 597: (2014) pp.75-81.
DOI: 10.1016/j.msea.2013.12.058
Google Scholar
[2]
S.E. Landwehr, G.E. Hilmas, W.G. Fahrenholtz and I.G. Talmy, Processing of ZrC–Mo Cermets for High Temperature Applications, Part II: Pressureless Sintering and Mechanical Properties. Journal of the American Ceramic Society. 91(3): (2008).
DOI: 10.1111/j.1551-2916.2007.02231.x
Google Scholar
[3]
C.B. P. Barnier, F. Thevenot, Hot-pressing kinetics of zirconium carbide. Journal of Material Science. 21: (1986) pp.2547-2552.
DOI: 10.1007/bf01114305
Google Scholar
[4]
M. Umalas, I. Hussainova, V. Reedo, D. -L. Young, E. Cura, S. -P. Hannula, R. Lõhmus and A. Lõhmus, Combined sol–gel and carbothermal synthesis of ZrC–TiC powders for composites. Materials Chemistry and Physics. 153: (2015) pp.301-306.
DOI: 10.1016/j.matchemphys.2015.01.017
Google Scholar
[5]
D.L. Yung, L. Kollo, I. Hussainova and A. Žikin, Reactive Sintering of ZrC-TiC Composites. Key Engineering Materials. 527: (2012) pp.20-25.
DOI: 10.4028/www.scientific.net/kem.527.20
Google Scholar
[6]
S.E. Landwehr, G.E. Hilmas, W.G. Fahrenholtz and I.G. Talmy, Processing of ZrC?Mo Cermets for High-Temperature Applications, Part I: Chemical Interactions in the ZrC?Mo System. Journal of the American Ceramic Society. 90(7): (2007) p.1998-(2002).
DOI: 10.1111/j.1551-2916.2007.01667.x
Google Scholar
[7]
S.E. Landwehr, G.E. Hilmas, W.G. Fahrenholtz, I.G. Talmy and S.G. DiPietro, Microstructure and mechanical characterization of ZrC–Mo cermets produced by hot isostatic pressing. Materials Science and Engineering: A. 497(1-2): (2008) pp.79-86.
DOI: 10.1016/j.msea.2008.07.017
Google Scholar
[8]
X. Zhang, N. Liu and C. Rong, Microstructure and fracture toughness of TiC–ZrC–WC–Mo–Ni cermets. International Journal of Refractory Metals and Hard Materials. 26(4): (2008) pp.346-356.
DOI: 10.1016/j.ijrmhm.2007.08.008
Google Scholar
[9]
Y. Li, H. Katsui and T. Goto, Spark plasma sintering of TiC–ZrC composites. Ceramics International. 41(5): (2015) pp.7103-7108.
DOI: 10.1016/j.ceramint.2015.02.019
Google Scholar
[10]
S. Liu, W. Hu, J. Xiang, F. Wen, B. Xu, D. Yu, J. He, Y. Tian and Z. Liu, Mechanical properties of nanocrystalline TiC–ZrC solid solutions fabricated by spark plasma sintering. Ceramics International. 40(7): (2014) pp.10517-10522.
DOI: 10.1016/j.ceramint.2014.03.024
Google Scholar
[11]
D. Sciti, S. Guicciardi and M. Nygren, Spark plasma sintering and mechanical behaviour of ZrC-based composites. Scripta Materialia. 59(6): (2008) pp.638-641.
DOI: 10.1016/j.scriptamat.2008.05.026
Google Scholar
[12]
V.I. Razumovskiy, A.V. Ruban, J. Odqvist, D. Dilner and P.A. Korzhavyi, Effect of carbon vacancies on thermodynamic properties of TiC–ZrC mixed carbides. Computer Coupling of Phase Diagrams and Thermochemistry. 46: (2014) pp.87-91.
DOI: 10.1016/j.calphad.2014.02.005
Google Scholar
[13]
M.H. Bocanegra-Bernal, Hot Isostatic Pressing (HIP) technology and its applications to metals and ceramics. Journal of Material Science. 39: (2004) pp.6399-6420.
DOI: 10.1023/b:jmsc.0000044878.11441.90
Google Scholar
[14]
L. Zhao, D. Jia, X. Duan, Z. Yang and Y. Zhou, Pressureless sintering of ZrC-based ceramics by enhancing powder sinterability. International Journal of Refractory Metals and Hard Materials. 29(4): (2011) pp.516-521.
DOI: 10.1016/j.ijrmhm.2011.03.001
Google Scholar
[15]
F. Sergejev, M. Antonov; Comparative study fracture toughness cermet and composites. Proceedings of Estonian Academia. 12(4): (2006) pp.388-398.
Google Scholar
[16]
S. -K. Sun, G. -J. Zhang, W. -W. Wu, J. -X. Liu, T. Suzuki and Y. Sakka, Reactive spark plasma sintering of ZrC and HfC ceramics with fine microstructures. Scripta Materialia. 69(2): (2013) pp.139-142.
DOI: 10.1016/j.scriptamat.2013.02.017
Google Scholar
[17]
R.B. Acicbe and G. Goller, Densification behavior and mechanical properties of spark plasma-sintered ZrC–TiC and ZrC–TiC–CNT composites. Journal of Materials Science. 48(6): (2012) pp.2388-2393.
DOI: 10.1007/s10853-012-7024-8
Google Scholar
[18]
I. Borgh, P. Hedström, T. Persson, S. Norgren, A. Borgenstam, J. Ågren and J. Odqvist, Microstructure, grain size distribution and grain shape in WC–Co alloys sintered at different carbon activities. International Journal of Refractory Metals and Hard Materials. 43: (2014).
DOI: 10.1016/j.ijrmhm.2013.12.007
Google Scholar