[1]
G. Chen, M.S. Dresselhaus, G. Dresselhaus, J.P. Fleurial, T. Caillat, Development in thermoelectric materials. Int. Mater. Rev. 48 (2003) 45–66.
DOI: 10.1179/095066003225010182
Google Scholar
[2]
G.J. Snyder, M. Christensen, E. Nishibori, T. Caillat, B.B. Iversen, Disordered zinc in Zn4Sb3 with phonon-glass and electron-crystal thermoelectric properties. Nat. Mater. 3 (2004) 458-463.
DOI: 10.1038/nmat1154
Google Scholar
[3]
M.K. Sneve, Remote control. Int. Atomic Energy Agency Bull. 48 (2006) 42–47.
Google Scholar
[4]
T. Seetawan, Theoretical analysis of the substitutable metal on the thermoelectric performance of CaMnO3. Integ. Ferro. 155 (2014) 9−14.
Google Scholar
[5]
M. Rittiruam, H. Wattanasarn, T. Seetawan, Thermophysical properties of Ca1-XEuXMnO3 (X = 0, 0. 05, 0. 10, 0. 15) simulated by classical molecular dynamics method. CMUJ NS Special Issue on Physics, 13 (2014) 585−593.
DOI: 10.12982/cmujns.2014.0060
Google Scholar
[6]
P. Thongsri, T. Seetawan, Decreased thermal conductivity of CaMnO3 by added-CNTs. Adv. Mater. Res. 770 (2013) 327−330.
DOI: 10.4028/www.scientific.net/amr.770.327
Google Scholar
[7]
H. Adachi, M. Tsukada, C. Satoko. Discrete variational Xα cluster calculations. I. application to metal clusters. J. Phys. Soc. Jpn. 45 (1978) 875-883.
DOI: 10.1143/jpsj.45.875
Google Scholar
[8]
T. Tanabe, H. Adachi, S. Imoto, Hartree-Fock-Slater model cluster calculations. II. hydrogen chemisorption on transition metal surfaces. JJAP. 17 (1978) 49-58.
DOI: 10.1143/jjap.17.49
Google Scholar
[9]
H. Adachi, S. Shiokawa, M. Tsukada. Discrete variational Xα cluster calculations. III. application to transition metal complexes. J. Phys. Soc. Jpn. 47 (1979) 1528-1537.
DOI: 10.1143/jpsj.47.1528
Google Scholar
[10]
S. Kafash, T. G. Moghadam , A. Kompany, S. M. Hosseini, Structure and electrical properties of CaMnO3 nanopowders prepared by sol-gel method. 3nd ICNN. (2010).
Google Scholar
[11]
N.F. Mott, E. A. Davis, Electronic processes in non-crystalline materials, Clarendon Press, Oxford, (1971).
Google Scholar
[12]
Y. Zhun, W. Su, J. Liu ,Y. Zhou, J. Li ,X. Zhang, Y. Du, C. Wang, Effects of Dy and Yb co-doping on thermoelectric properties of CaMnO3 ceramics. J. Ceramics International. 41 (2015) 1535–1539.
DOI: 10.1016/j.ceramint.2014.09.089
Google Scholar
[13]
R. Kabir, R. Tian, T. Zhang, R. Donelson, T. T. Tan, S. Li, Role of Bi doping in thermoelectric properties of CaMnO3. J. Alloys Compd. 628 (2015) 347–351.
DOI: 10.1016/j.jallcom.2014.12.141
Google Scholar
[14]
D. Flahaut, R. Funahashi, K. Lee, H. Ohta, K. Koumoto, Effect of the Yb substitutions on the thermoelectric properties of CaMnO3, ICT 06. 25th International Conference on Thermoelectrics. 25 (2006) 103–106.
DOI: 10.1109/ict.2006.331291
Google Scholar
[15]
M. Mouyane, B. Itaalit, J. Bernard, D. H, J. G. Noudem, Flash combustion synthesis of electron doped-CaMnO3 thermoelectric oxides. Powder Technology 264 (2014) 71–77.
DOI: 10.1016/j.powtec.2014.05.022
Google Scholar
[16]
J.W. Parka, D.H. Kwak, S.H. Yoon, S.C. Choi, Thermoelectric properties of Bi, Nb co-substituted CaMnO3 at high temperature. J. Alloys Compd. 487 (2009) 550–555.
DOI: 10.1016/j.jallcom.2009.08.012
Google Scholar