Investigating Power Factor of CaMnO3 Added Carbon Nanotubes

Article Preview

Abstract:

CaMnO3 (CMO) thermoelectric material is large Seebeck coefficient but high electrical resistivity. To reduce electrical resistivity by adding carbon nanotubes (CNTs) in CMO material and may be decreased Seebeck coefficient. In this work, we simulated electronic structure of CMO and CNTs-added CMO by DV-Xα method to investigation of power factor and enhance the thermoelectric performance. The Seebeck coefficient and electrical resistivity were calculated by Maxwell-Boltzmann distribution and Mott’s law to investigate power factor. The DV-Xa calculated show the energy level and density of state (DOS) of CMO and CNTs-added CMO demonstrated that the energy gap reduces from 3.33 eV to 0.19 eV affect to enhance the power factor of CMO with Seebeck coefficient and electrical resistivity are decreases. The power factor of CNTs-added CMO was increased with increasing CNTs content.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 675-676)

Pages:

171-174

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Chen, M.S. Dresselhaus, G. Dresselhaus, J.P. Fleurial, T. Caillat, Development in thermoelectric materials. Int. Mater. Rev. 48 (2003) 45–66.

DOI: 10.1179/095066003225010182

Google Scholar

[2] G.J. Snyder, M. Christensen, E. Nishibori, T. Caillat, B.B. Iversen, Disordered zinc in Zn4Sb3 with phonon-glass and electron-crystal thermoelectric properties. Nat. Mater. 3 (2004) 458-463.

DOI: 10.1038/nmat1154

Google Scholar

[3] M.K. Sneve, Remote control. Int. Atomic Energy Agency Bull. 48 (2006) 42–47.

Google Scholar

[4] T. Seetawan, Theoretical analysis of the substitutable metal on the thermoelectric performance of CaMnO3. Integ. Ferro. 155 (2014) 9−14.

Google Scholar

[5] M. Rittiruam, H. Wattanasarn, T. Seetawan, Thermophysical properties of Ca1-XEuXMnO3 (X = 0, 0. 05, 0. 10, 0. 15) simulated by classical molecular dynamics method. CMUJ NS Special Issue on Physics, 13 (2014) 585−593.

DOI: 10.12982/cmujns.2014.0060

Google Scholar

[6] P. Thongsri, T. Seetawan, Decreased thermal conductivity of CaMnO3 by added-CNTs. Adv. Mater. Res. 770 (2013) 327−330.

DOI: 10.4028/www.scientific.net/amr.770.327

Google Scholar

[7] H. Adachi, M. Tsukada, C. Satoko. Discrete variational Xα cluster calculations. I. application to metal clusters. J. Phys. Soc. Jpn. 45 (1978) 875-883.

DOI: 10.1143/jpsj.45.875

Google Scholar

[8] T. Tanabe, H. Adachi, S. Imoto, Hartree-Fock-Slater model cluster calculations. II. hydrogen chemisorption on transition metal surfaces. JJAP. 17 (1978) 49-58.

DOI: 10.1143/jjap.17.49

Google Scholar

[9] H. Adachi, S. Shiokawa, M. Tsukada. Discrete variational Xα cluster calculations. III. application to transition metal complexes. J. Phys. Soc. Jpn. 47 (1979) 1528-1537.

DOI: 10.1143/jpsj.47.1528

Google Scholar

[10] S. Kafash, T. G. Moghadam , A. Kompany, S. M. Hosseini, Structure and electrical properties of CaMnO3 nanopowders prepared by sol-gel method. 3nd ICNN. (2010).

Google Scholar

[11] N.F. Mott, E. A. Davis, Electronic processes in non-crystalline materials, Clarendon Press, Oxford, (1971).

Google Scholar

[12] Y. Zhun, W. Su, J. Liu ,Y. Zhou, J. Li ,X. Zhang, Y. Du, C. Wang, Effects of Dy and Yb co-doping on thermoelectric properties of CaMnO3 ceramics. J. Ceramics International. 41 (2015) 1535–1539.

DOI: 10.1016/j.ceramint.2014.09.089

Google Scholar

[13] R. Kabir, R. Tian, T. Zhang, R. Donelson, T. T. Tan, S. Li, Role of Bi doping in thermoelectric properties of CaMnO3. J. Alloys Compd. 628 (2015) 347–351.

DOI: 10.1016/j.jallcom.2014.12.141

Google Scholar

[14] D. Flahaut, R. Funahashi, K. Lee, H. Ohta, K. Koumoto, Effect of the Yb substitutions on the thermoelectric properties of CaMnO3, ICT 06. 25th International Conference on Thermoelectrics. 25 (2006) 103–106.

DOI: 10.1109/ict.2006.331291

Google Scholar

[15] M. Mouyane, B. Itaalit, J. Bernard, D. H, J. G. Noudem, Flash combustion synthesis of electron doped-CaMnO3 thermoelectric oxides. Powder Technology 264 (2014) 71–77.

DOI: 10.1016/j.powtec.2014.05.022

Google Scholar

[16] J.W. Parka, D.H. Kwak, S.H. Yoon, S.C. Choi, Thermoelectric properties of Bi, Nb co-substituted CaMnO3 at high temperature. J. Alloys Compd. 487 (2009) 550–555.

DOI: 10.1016/j.jallcom.2009.08.012

Google Scholar