[1]
W. G. Fahrenholtz, G. E. Hilmas, I. G. Talmy, J. A. Zaykoski, Refractory diborides of zirconium and hafnium, J. Am. Ceram. Soc., 90(5): 1347-1364, (2007).
DOI: 10.1111/j.1551-2916.2007.01583.x
Google Scholar
[2]
C. W. Ohlhorst, W. L. Vaughn, R. K. Lewis, J. D. Milhoan, Arc jet results on candidate high temperature coatings for NASA's NGLT refractory composite leading edge task, NASA-(2003).
Google Scholar
[3]
F. Monteverde, A. Bellosi, The resistance to oxidation of an HfB2-SiC composite, J. Eur. Ceram. Soc., (25): 1025-1031, (2005).
DOI: 10.1016/j.jeurceramsoc.2004.05.009
Google Scholar
[4]
L. L. Li, Y. G. Wang, L. F. Cheng, L. T. Zhang, Preparation and properties of 2D C/SiC-ZrB2-TaC compos. Ceram. Inter., 37: 891-896, (2011).
DOI: 10.1016/j.ceramint.2010.10.033
Google Scholar
[5]
J. C. Zhao, J. H. Westbrook, Ultrahigh-temperature materials for jet engines, MRS Bulletin, 622-626, (2003).
DOI: 10.1557/mrs2003.189
Google Scholar
[6]
R. Naslain, F. Christin, SiC-matrix composite materials for advanced jet engines, MRS Bulletin, 654-658, (2003).
DOI: 10.1557/mrs2003.193
Google Scholar
[7]
C. B. Bargeron, R. C. Benson, A. N. Jette, T. E. Philips, Oxidation of hafnium carbide in the temperature range 1400 to 2060 oC, J. Am. Ceram. Soc., 76.
Google Scholar
[4]
1040-1046, (1993).
Google Scholar
[8]
M. M. Opeka, I. G. Talmy, J. A. Zaykoski, Oxidation-based materials selection for 2000 oC+ hypersonic aerosurfaces; Theoretical considerations and historical experience, J. Mater. Sci., 39 : 5887-5904, (2004).
DOI: 10.1023/b:jmsc.0000041686.21788.77
Google Scholar
[9]
J. P. Viricelle, P. Goursat, D. Bahloul-Hourlier, Oxidation behaviors of a multi-layered ceramic-matrix composite (SiC)f/C/(SiBC)m, Comp. Sci. Tech. 607-614, (2001).
DOI: 10.1016/s0266-3538(00)00243-8
Google Scholar
[10]
X. X. Bu, Y. W. Bao, Mechanical properties evaluation of ultra-high temperature ceramics, High performance ceramics V, , 368-372: 1791-1794, (2008).
DOI: 10.4028/www.scientific.net/kem.368-372.1791
Google Scholar
[11]
Y. W. Bao, Y. L. Song, D. T. Wan, D. Y. Jiang, et al., Fine ceramics (advanced ceramics,advanced technical ceramics)-Test method for flexural strength of monolithic ceramics at elevated temperature, Chinese national standard, (2008).
DOI: 10.3403/30212260
Google Scholar
[12]
D. T. Wan, Y. T. Bao, Y. Tian, H. Zhao, Evaluation of impact bending strength of ceramic composites at ultra-high temperatures from 1500-2000 oC in air, Key Engin. Mater., 591, 145-149, (2014).
DOI: 10.4028/www.scientific.net/kem.591.145
Google Scholar
[13]
D. T. Wan, Y. W. Bao, Y. Tian, Y. Qiu, H. Zhao, A new method for determining strength and fracture toughness of ceramic materials in air at 1500-2000 oC, Key Engin. Mater., accepted.
DOI: 10.4028/www.scientific.net/kem.633.447
Google Scholar
[14]
Y. W. Bao, D. T. Wan, New techniques for determining the mechanical properties of structural ceramic in special conditions, Chinese science bulletin, 60(3), 246-256, 2015 (in Chinese).
DOI: 10.1360/n972014-00449
Google Scholar
[15]
T. H. Courtney, Mechanical behavior of materials, Published by McGraw-Hill Companies, Inc., 418-433, (2000).
Google Scholar