Synthesis and Characterization of CeO2 Nanoparticles

Article Preview

Abstract:

Dispersions of cerium oxide nanoparticles in water, ethanol, and water-ethanol solution were synthesized for the first time using laser ablation of metallic target. The fundamental harmonic of nanosecond Nd:YAG laser was used. Nanocrystalline powders of cerium oxide were obtained from the dispersions. The average size of the crystallites was 17-19 nm. Phase composition of nanoparticles was confirmed by X-ray diffraction and Raman spectroscopy. It was found that carbon present on the surface of CeO2 particles. The materials obtained may be used as catalyst carriers for CO oxidation, and as active components of sunscreen cosmetic products.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

281-287

Citation:

Online since:

February 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V.K. Ivanov, A.B. Shcherbakov, A.V. Usatenko, Structure-sensitive properties and biomedical applications of nanodispersed cerium dioxide, Russian Chemical Reviews. 78, 9 (2009) 855-871.

DOI: 10.1070/rc2009v078n09abeh004058

Google Scholar

[2] A. Trovarelli, Catalytic Properties of Ceria and CeO2-Containing Materials, Catalysis Reviews: Science and Engineering. 38, 4 (1996) 439-520.

DOI: 10.1080/01614949608006464

Google Scholar

[3] J. Kašpar, P. Fornasiero, M. Graziani, Use of CeO2-based oxides in the three-way catalysis, Catalysis Today. 50, 2 (1999) 285-298.

DOI: 10.1016/s0920-5861(98)00510-0

Google Scholar

[4] R.V. Gulyaev, E.M. Slavinskaya, S.A. Novopashin, D.V. Smovzh, A.V. Zaikovskii, D. Osadchii, O.A. Bulavchenko, S.V. Korenev, A.I. Boronin, Highly active PdCeOx composite catalysts for low-temperature CO oxidation, prepared by plasma-arc synthesis, Applied Catalysis B: Environmental. 147 (2014).

DOI: 10.1016/j.apcatb.2013.08.043

Google Scholar

[5] M. S Wason, J. Zhao, Cerium oxide nanoparticles: potential applications for cancer and other diseases, American Journal of Translational Research. 5, 2 (2013) 126-131.

Google Scholar

[6] C. Walkey, S. Das, S. Seal, J. Erlichman, K. Heckman, L. Ghibelli, E. Traversa, J.F. McGinnisf, W.T. Self, Catalytic properties and biomedical applications of cerium oxide nanoparticles, Environ. Sci.: Nano. 2 (2015) 33-53.

DOI: 10.1039/c4en00138a

Google Scholar

[7] S.S. Lee, W. Song, M. Cho, H.L. Puppala, P. Nguyen, H. Zhu, L. Segatori, V.L. Colvin, Antioxidant Properties of Cerium Oxide Nanocrystals as a Function of Nanocrystal Diameter and Surface Coating, ACS Nano. 7, 11 (2013) 9693-9703.

DOI: 10.1021/nn4026806

Google Scholar

[8] Z. Lu, C. Mao, M. Meng, S. Liu, Y. Tian, L. Yu, B. Sun, C.M. Li, Fabrication of CeO2 nanoparticle-modified silk for UV protection and antibacterial applications, Journal of Colloid and Interface Science. 435 (2014) 8-14.

DOI: 10.1016/j.jcis.2014.08.015

Google Scholar

[9] S. Yabe, T. Sato, Cerium oxide for sunscreen cosmetics, Journal of Solid State Chemistry. 171 (2003) 7-11.

DOI: 10.1016/s0022-4596(02)00139-1

Google Scholar

[10] N.M. Zholobak, V.K. Ivanov, A.B. Shcherbakov, A.S. Shaporev, O.S. Polezhaeva, A. Ye. Baranchikov, N. Ya. Spivaka, Yu.D. Tretyakov, UV-shielding property, photocatalytic activity and photocytotoxicity of ceria colloid solutions, J. Photochem. Photobiol. B. 102 (2011).

DOI: 10.1016/j.jphotobiol.2010.09.002

Google Scholar

[11] D. Tan, S. Zhou, J. Qiu, N. Khusro, Preparation of functional nanomaterials with femtosecond laser ablation in solution, Journal of Photochemistry and Photobiology C: Photochemistry Reviews. 17 (2013) 50-68.

DOI: 10.1016/j.jphotochemrev.2013.08.002

Google Scholar

[12] D. Goncharova, I. Lapin, V. Svetlichnyi, Synthesis of CdS nanoparticles by laser ablation of metallic cadmium target in presence different precursors, Advanced Materials Research. 1085 (2015) 182-186.

DOI: 10.4028/www.scientific.net/amr.1085.182

Google Scholar

[13] T. Sasaki, Y. Shimizu, N. Koshizaki, Preparation of metal oxide-based nanomaterials using nanosecond pulsed laser ablation in liquids, Journal of Photochemistry and Photobiology A: Chemistry. 182 (2006) 335-341.

DOI: 10.1016/j.jphotochem.2006.05.031

Google Scholar

[14] V.A. Svetlichnyi, I.N. Lapin, Structure and properties of nanoparticles fabricated by laser ablation of Zn metal targets in water and ethanol, Russian Physics Journal. 56 (2013) 581-587.

DOI: 10.1007/s11182-013-0071-z

Google Scholar

[15] V.A. Svetlichnyi, Т.I. Izaak, I.N. Lapin, D.О. Martynova, О.А. Stonkus, А.I. Stadnichenko, А.I. Boronin, Physicochemical investigation of nanopowders prepared by laser ablation of crystalline silicon in water, Advanced Powder Technology. 26, 2 (2015).

DOI: 10.1016/j.apt.2014.12.004

Google Scholar

[16] W. Wang, J.Y. Howe, Y. Li, X. Qiu, D.C. Joy, M.P. Paranthaman, M.J. Doktyczde, B. Gua, A surfactant and template-free route for synthesizing ceria nanocrystals with tunable morphologies, Journal of Material Chemistry. 20 (2010) 7776-7781.

DOI: 10.1039/c0jm00982b

Google Scholar

[17] J.E. Spanier, R.D. Robinson, F. Zhang, S. -W. Chan, I.P. Herman, Size-dependent properties of CeO2–y nanoparticles as studied by Raman scattering, Physical Review B. 64 (2001) 245407, 1-8.

Google Scholar

[18] Y. Takeda, F. Mafuné, Formation of wide bandgap cerium oxide nanoparticles by laser ablation in aqueous solution, Chemical Physics Letters. 599 (2014) 110-115.

DOI: 10.1016/j.cplett.2014.03.026

Google Scholar