[1]
O. Arrigoni, M.C. De Tullio, Ascorbic acid: much more than just an antioxidant, Biochim. Biophys. Acta. 1569 (2002) 1-9.
DOI: 10.1016/s0304-4165(01)00235-5
Google Scholar
[2]
B.J. Venton, R.M. Wightman, Psychoanalytical electrochemistry: dopamine and behavior, Anal. Chem. October 1 (2003) 414A-421A.
Google Scholar
[3]
P. He, W. Wang, L. Du, F. Dong, Y. Deng, T. Zhang, Zeolite A functionalized with copper nanoparticles and graphene oxide for simultaneous electrochemical determination of dopamine and ascorbic acid, Anal. Chim. Acta. 739 (2012) 25-30.
DOI: 10.1016/j.aca.2012.06.004
Google Scholar
[4]
Y. Zhang, W. Ren, Sh. Zhang, Simultaneous determination of epinephrine, dopamine, ascorbic acid and uric acid by polydopamine-nanogold composites modified electrode, Int. J. Electrochem. Sci. 8 (2013) 6839-6850.
DOI: 10.1016/s1452-3981(23)14810-3
Google Scholar
[5]
D. Han, T. Han, C. Shan, A. Ivaska, L. Niu, Simultaneous determination of ascorbic acid, dopamine and uric acid with chitosan-graphene modified electrode, Electroanalysis. 22, #17-18 (2010) 2001-(2008).
DOI: 10.1002/elan.201000094
Google Scholar
[6]
T.Q. Xu, Q.L. Zhang, Z.Y. Lv, J. Wei, A.J. Wang, J.J. Feng, Simultaneous determination of dopamine and uric acid in the presence of ascorbic acid using Pt nanoparticles supported on reduced graphene oxide, Electrochim. Acta. 115 (2014) 109-115.
DOI: 10.1016/j.electacta.2013.10.147
Google Scholar
[7]
B Kaur, T. Pandiyan, B. Satpati, R. Srivastava, Simultaneous and sensitive determination of ascorbic acid, dopamine, uric acid, and tryptophan with silver nanoparticles-decorated reduced graphene oxide modified electrode, Colloids and Surfaces B. 111 (2013).
DOI: 10.1016/j.colsurfb.2013.05.023
Google Scholar
[8]
S.P. Kumar, R. Manjunatha, T.V. Venkatesha, G.S. Suresh, Polystyrene Sulfonate wrapped multiwalled carbon nanotubes modified graphite electrode for simultaneous determination of ascorbic acid, dopamine and uric acid, Rus. J. Electrochem. 49, #4 (2013).
DOI: 10.1134/s1023193512120063
Google Scholar
[9]
R. Cui, X. Wang, G. Zhang, C. Wang, Simultaneous determination of dopamine, ascorbic acid, and uric acid using helical carbon nanotubes modified electrode, Sensors and Actuators B. 161 (2012) 1139-1143.
DOI: 10.1016/j.snb.2011.11.040
Google Scholar
[10]
P. Mayer, R. Holze, Electrocatalysis of redox reactions by metal nanoparticles on graphite electrodes, J. Solid State Electrochem. 5 (2001) 402-411.
DOI: 10.1007/s100080000169
Google Scholar
[11]
V.A. Svetlichnyi, I.N. Lapin, Optimization of the process of nanoparticle fabrication by laser ablation of bulk targets in a liquid, Russian Physics Journal. 57, #3 (2015) In Print.
DOI: 10.1007/s11182-015-0452-6
Google Scholar
[12]
R. Mahfouz, F.J. Cadete Santos Aires, A. Brenier, B. Jacquier, J.C. Bertolini, Synthesis and physico-chemical characteristics of nanosized particles produced by laser ablation of a nickel target in water, Appl. Surface Sci. 254 (2008) 5181-5190.
DOI: 10.1016/j.apsusc.2008.02.022
Google Scholar
[13]
J. Zhang, C.Q. Lan, Nickel and cobalt nanoparticles produced by laser ablation of solids in organic solution, Materials Letters. 62 (2008) 1521-1524.
DOI: 10.1016/j.matlet.2007.09.038
Google Scholar