Influence of Substrate Temperature on Microstructure and Properties of Ti-Si-C Film

Article Preview

Abstract:

Ti-Si-C films were prepared on cemented carbide by chemical vapor deposition. The reactive gas system was CH4, (CH3)4Si, TiCl4 and H2. The film was analyzed and tested by SEM, AFM, EDS, XPS, microhardness tester, friction and wear tester. The results indicate that the film is continuous and dense. At higher substrate temperature, the hardness of the film will be higher. When the substrate temperature is 850°C, the adhesion of the film is highest with coefficient of friction only 0.14.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

813-820

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Zehnder, J. Matthey, P. Schwaller, et al: Surface and Coatings Technology, vol. 163(2004), pp.238-244.

Google Scholar

[2] X. Sun, J. S. Reid, E. Kolawa, et al: Journal of Applied Physics, vol. 81(1997), pp.656-663.

Google Scholar

[3] Witold Posadowski: Thin Solid Films, vol. 162(1988), pp.111-117.

Google Scholar

[4] Marc-A. Nicolet: Vacuum, vol. 59(2000), pp.716-720.

Google Scholar

[5] M. Rester, J. Neidhardt, P. Eklund, et al: Materials Science and Engineering: A, vol. 429(2006), pp.90-95.

Google Scholar

[6] T Sonoda, S Nakao and M Ikeyama, et al: Journal of Physics: Conference Series, vol. 417(2013), Article ID 012063.

Google Scholar

[7] A. R. Phani, J. E. Krzanowski, and J. J. Nainaparampil, et al: Science & Technology of Materials, vol. 19(2001), no. 5.

Google Scholar

[8] C. Lopes, N.M.G. Parreira, S. Carvalho, et al: Surface & Coatings Technology, vol. 201(2007), pp.7180-7186.

Google Scholar

[9] Chi-Lung Chang, Yu-Wen Chen: Surface & Coatings Technology, vol. 205(2010), p. S1-S4.

Google Scholar

[10] W. Gulbiński, T. Suszko, A. Gilewicz, et al: Surface & Coatings Technology, vol. 200( 2006), pp.4179-4184.

DOI: 10.1016/j.surfcoat.2004.12.011

Google Scholar

[11] Witold Gulbiński, Adam Gilewicz, Tomasz Suszko, et al: Surface & Coatings Technology, vol. 180-181(2004), pp.341-346.

Google Scholar

[12] M.W. Barsoum: Solid State Chem, Vol. 28 (2000), p.201.

Google Scholar

[13] J. M. Molina-Aldareguia, J. Emmerlich, J. -P. Palmquist, et al: Scripta Mater, vol. 49 (2003), p.155.

Google Scholar

[14] M.W. Barsoum, T. Zhen, S.R. Kalidindi, et al: Nature Mater, vol. 2(2003), p.107.

Google Scholar

[15] J. Alami, P. Eklund, J. Emmerlich, et al: Thin Solid Films, vol. 515 (2006) , pp.1731-1736.

Google Scholar

[16] Li S B, Xie J X, Zhang L T, et al: Materials Letters, vol. 57(2003), pp.3048-3056.

Google Scholar

[17] Konoplyuk S, Abe T, Uchimoto T, et al: Materials Letters, vol. 59(2005), pp.2342-2346.

Google Scholar

[18] J. Lauridsen, P. Eklund, T. Joelsson, et al: Surface & Coatings Technology, vol. 205(2010), pp.299-305.

Google Scholar

[19] S. Hassani, J. -E. Klemberg-Sapieha, L. Martinu: Surface & Coatings Technology, vol. 205(2010), pp.1426-1430.

DOI: 10.1016/j.surfcoat.2010.07.098

Google Scholar

[20] R. Phani, J.E. Krzanowski and J.J. Nainaparampil: J. Vac. Sci. Technol. 2252 (2001).

Google Scholar

[21] B. Vincent Crist: Handbook of The Elements and Native Oxides, Wiley, (2000), p.548.

Google Scholar

[22] Rao Qian: Southwest Jiaotong University, (2014).

Google Scholar

[23] Radhakrishnan R, Henager Jr C H, Brimhall J L, et al: Scripta Materialia, vol. 34(1996), pp.1809-1814.

DOI: 10.1016/1359-6462(95)00663-x

Google Scholar