[1]
H. -T. Liu, E. Schubert. Micro Abrasive-Water jet Technology[A]. S. Kr: In Tech, 2012: 205-234.
Google Scholar
[2]
Yunqi Zhang. The principle and application of high pressure water jet cutting J. Journal of WuHan university of technology. 16 (1994) 13-18.
Google Scholar
[3]
Xiaojian Liu, Tao Yu. Slurry abrasive jet cutting tools and the study of its cutting performance J. Lubrication and sealing. 11 (2006) 99-104.
Google Scholar
[4]
Haoyu Zhang, Hui Li, Zhen Liu et al. The research of Water jet cutting efficiency J. The study and application of mechanical. 21(2008) 15-22.
Google Scholar
[5]
Xiaoming Jin, Ruizhi Guo. The application of high-pressure Water jet in machining J. CHINA SCIENCE AND TECHNOLOGY INFORMATION, 12 (2012) 163-164.
Google Scholar
[6]
H. N, K. K. Surface evolution models for abrasive slurry jet micro-machining of channels and holes in glass J. Wear. 309(2014)65–73.
DOI: 10.1016/j.wear.2013.11.003
Google Scholar
[7]
A. A, A. Composite Cutting with Abrasive Water Jet J. Procedia Engineering, 63 (2013) 421–429.
Google Scholar
[8]
H. Qi. The application of high pressure water jet cutting technology in the machine J. Coal mine machinery. 34 (2013) 241-242.
Google Scholar
[9]
Liping Liu, Zhuwei Wang. The Application of High-pressure Water Jet in the car industry J. ·material·process·equipment. 5 (1999) 18-19.
Google Scholar
[10]
Yancong Guan, Xiangwang Meng et al. The Effect of High Pressure Abrasive Water Jet Machining Parameters on Stone Material Surface Roughness J. Stone. 4 (2014) 16-18.
Google Scholar
[11]
The latest in waater jet cutting technology[N]. WORLD PUMPS, 2012. 10.
Google Scholar
[12]
E.S. Pr, K. Sa. Nonconventional cutting of plate glass using hot air jet: experimental studies J. MECATRONICS , 11 (2001) 595-615.
DOI: 10.1016/s0957-4158(00)00033-7
Google Scholar
[13]
PrakashES, SadashivappaK, JosephV, SingaperumalM. Strain measurement in plate glass during Thermal cutting[A]. 2000 Jan12/13; Indian Institute of Technology, Madras, India. pp.117-22.
Google Scholar
[14]
F. YU, J JA, A DD, T RH. Waterjet cutting of cross link glass[A]. J Vac Sci Technol A 1995; 13910: 136-9.
Google Scholar
[15]
PrakashES, SadashivappaK, JosephV, SingaperumalM. Experimental study on glass cutting speed using hot air jet[A]., 2000 May9-11; Germany.
Google Scholar
[16]
Jingming Fan, Chengyong Wang, Jun Wang. The development of micro abrasive water jet machining technology J. Diamond and abrasives engineering, 1 (2005) 25-35.
Google Scholar
[17]
L. Engelmeier et al. Liquid carbon dioxide jets for cutting applications J. The Journal of Supercritical Fluids. 69 (2012) 29-33.
DOI: 10.1016/j.supflu.2012.04.018
Google Scholar
[18]
Daniel Krajcarz. Comparison Metal Water Jet Cutting with Laser and Plasma Cutting[A]. Procedia Engineering. 69 (2014) 838–843.
DOI: 10.1016/j.proeng.2014.03.061
Google Scholar
[19]
Ching-Yu Hsua, Cho-Chung Liang. A numerical study on high-speed water jet impact J. Ocean Engineering. 72 (2013) 98–106.
Google Scholar
[20]
Y.I. Oka, H. Hayashi. Evaluation of erosion resistance for metal–ceramic composites and cermets using a water-jet testing apparatus J. Wear. 271 (2011) 1397–1403.
DOI: 10.1016/j.wear.2010.11.040
Google Scholar
[21]
K. Dadkhahipour, T. Nguyen, J. Wang. Mechanisms of channel formation on glasses by abrasive water jet milling J. Wear. 10 (2012) 292–293.
DOI: 10.1016/j.wear.2012.06.008
Google Scholar
[22]
Amir Hossein Azimi, David Z. Zhu. Computational investigation of vertical slurry jets in water J. International Journal of Multiphase Flow. 47 (2012) 94–114.
DOI: 10.1016/j.ijmultiphaseflow.2012.07.002
Google Scholar
[23]
J.M. Fan, H.Z. Li, J. Wang, C.Y. Wang. A study of the flow characteristics in micro-abrasive jets J. Experimental Thermal and Fluid Science. 35 (2011) 1097–1106.
DOI: 10.1016/j.expthermflusci.2011.03.004
Google Scholar
[24]
T. Yo, E. Sh. An experimental investigation on the impingement of a planar jet of Al2O3–water nanofluid on a V-shaped plate J. Experimental Thermal and Fluid Science. 50 (2013) 114–126.
DOI: 10.1016/j.expthermflusci.2013.05.011
Google Scholar
[25]
D.A. A, D.S. S, M.C. Ket al Abrasive water jet cutting of polycrystalline diamond: A preliminary investigation J. International Journal of Machinc Tools&Manufacture. 49 (2009) 797-803.
DOI: 10.1016/j.ijmachtools.2009.04.003
Google Scholar
[26]
Jiuan-hung Ke, Feng-che Tsai, Jung-Chou Hung, Biing-hwa Yan. Characteristics study of flexible magnetic abrasive in abrasive jet machining. Procedia CIRP, 2012, (1): 679–680.
DOI: 10.1016/j.procir.2012.05.025
Google Scholar
[27]
K. Kowsari, D.F. James. The effects of dilute polymer solution elasticity and viscosity on abrasive slurry jet micro-machining of glass. Wear. 309 (2014) 112–119.
DOI: 10.1016/j.wear.2013.11.011
Google Scholar
[28]
T. Nguyen, D.K. Shanmugam, J. Wang. Effect of liquid properties on the stability of an abrasive water jet. International Journal of Machine Tools & Manufacture. 48 ( 2008) 112–119.
DOI: 10.1016/j.ijmachtools.2008.01.009
Google Scholar
[29]
A. Alberdi et al. Composite Cutting with Abrasive Water Jet[A]. Procedia Engineering, 2013(63)421-429.
DOI: 10.1016/j.proeng.2013.08.217
Google Scholar
[30]
S. Ally, J.K. Spelt, M. Papini. Prediction of machined surface evolution in the abrasive jet micro-machining of metals. Wear, 292-293(2012), 89–99.
DOI: 10.1016/j.wear.2012.05.029
Google Scholar
[31]
A.G. Gradeena, J.K. Spelt, M. Papini. Cryogenic abrasive jet machining of polydimethylsiloxane at differenttemperatures. Wear, 274-275 (2012), 335–344.
DOI: 10.1016/j.wear.2011.09.013
Google Scholar
[32]
Asif IQBAL, Naeem U DAR, Ghulam HUSSAIN. Optimization of Abrasive Water Jet Cutting of Ductile Materials J. Wuhan University of Tecnology and Springer-Verlag Berlin.
Google Scholar
[33]
J, Wang, D.M. Guo. The cutting performance in multipass abrasive waterjet machining of industrial ceramics J. Journal of Materials Processing Technology. 133 (2003) 371-377.
DOI: 10.1016/s0924-0136(02)01125-1
Google Scholar
[34]
G.V.S. Prasad, J. Wang, W.C.K. Wong, Kerf formation analysis in the abrasive waterjet machining of industrial ceramics[A], Shanghai, 1998, pp.213-220.
Google Scholar
[35]
G. A Es, R. S Ga, K Ri. Characterisation of abrasive water-jet process for pocket milling in Inconel 718[A]. 2012(1): 404 – 408.
DOI: 10.1016/j.procir.2012.04.072
Google Scholar
[36]
H. Nouraei et al. A comparison with abrasive air jet micro-machining J. Journal of Material processing Technology,. 213 (2013) 1711-1724.
DOI: 10.1016/j.jmatprotec.2013.03.024
Google Scholar
[47]
B. Strnadel, L.M. Hlava, L. Gembalova. Effect of steel structure on the declination angle in AWJ cutting J. International Journal of Machine Tools & Manufacture, 64 (2013) 12–19.
DOI: 10.1016/j.ijmachtools.2012.07.015
Google Scholar
[38]
W Li. An environmentally friendly approach for contaminants removal using supercritical CO2 for remanufacturing industry J. Applied Surface Science. 292 (2014) 142–148.
DOI: 10.1016/j.apsusc.2013.11.102
Google Scholar
[39]
D Y, W R, NI Ho, et al. Dynamical analysis of high-pressure supercritical carbon dioxide jet in well drilling J. Journal of Hydrodynamics DOI: 10. 1016/S1001-6058(11)60392-3 528-533.
DOI: 10.1016/s1001-6058(11)60392-3
Google Scholar
[40]
DU Yu-kun, WANG Rui-he, et al. The experiment of Supercritical Carbon Dioxide Jet in rock breaking J. Journal of China university of petroleum (natural science edition), 36(2012)93-96.
Google Scholar