Literature Review of Jet Machining

Article Preview

Abstract:

Jet Machining has significant advantages in processing precision, processing speed, environmental protection, and social benefits, etc. For years, it has been applied in the processing of a variety of materials processing successfully. This paper summarized research achievements on processing characteristics, flow field properties, particle distribution of many kinds of Jets (gas jet, water jet, supercritical carbon dioxide jet ) processing comprehensively and cutting performance for different materials (flexible material, brittle material, super hard materials). It will offer reference for further researching work and design of this novel method. In the meantime it will promote the application of jet processing in industrial production.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

830-836

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. -T. Liu, E. Schubert. Micro Abrasive-Water jet Technology[A]. S. Kr: In Tech, 2012: 205-234.

Google Scholar

[2] Yunqi Zhang. The principle and application of high pressure water jet cutting J. Journal of WuHan university of technology. 16 (1994) 13-18.

Google Scholar

[3] Xiaojian Liu, Tao Yu. Slurry abrasive jet cutting tools and the study of its cutting performance J. Lubrication and sealing. 11 (2006) 99-104.

Google Scholar

[4] Haoyu Zhang, Hui Li, Zhen Liu et al. The research of Water jet cutting efficiency J. The study and application of mechanical. 21(2008) 15-22.

Google Scholar

[5] Xiaoming Jin, Ruizhi Guo. The application of high-pressure Water jet in machining J. CHINA SCIENCE AND TECHNOLOGY INFORMATION, 12 (2012) 163-164.

Google Scholar

[6] H. N, K. K. Surface evolution models for abrasive slurry jet micro-machining of channels and holes in glass J. Wear. 309(2014)65–73.

DOI: 10.1016/j.wear.2013.11.003

Google Scholar

[7] A. A, A. Composite Cutting with Abrasive Water Jet J. Procedia Engineering, 63 (2013) 421–429.

Google Scholar

[8] H. Qi. The application of high pressure water jet cutting technology in the machine J. Coal mine machinery. 34 (2013) 241-242.

Google Scholar

[9] Liping Liu, Zhuwei Wang. The Application of High-pressure Water Jet in the car industry J. ·material·process·equipment. 5 (1999) 18-19.

Google Scholar

[10] Yancong Guan, Xiangwang Meng et al. The Effect of High Pressure Abrasive Water Jet Machining Parameters on Stone Material Surface Roughness J. Stone. 4 (2014) 16-18.

Google Scholar

[11] The latest in waater jet cutting technology[N]. WORLD PUMPS, 2012. 10.

Google Scholar

[12] E.S. Pr, K. Sa. Nonconventional cutting of plate glass using hot air jet: experimental studies J. MECATRONICS , 11 (2001) 595-615.

DOI: 10.1016/s0957-4158(00)00033-7

Google Scholar

[13] PrakashES, SadashivappaK, JosephV, SingaperumalM. Strain measurement in plate glass during Thermal cutting[A]. 2000 Jan12/13; Indian Institute of Technology, Madras, India. pp.117-22.

Google Scholar

[14] F. YU, J JA, A DD, T RH. Waterjet cutting of cross link glass[A]. J Vac Sci Technol A 1995; 13910: 136-9.

Google Scholar

[15] PrakashES, SadashivappaK, JosephV, SingaperumalM. Experimental study on glass cutting speed using hot air jet[A]., 2000 May9-11; Germany.

Google Scholar

[16] Jingming Fan, Chengyong Wang, Jun Wang. The development of micro abrasive water jet machining technology J. Diamond and abrasives engineering, 1 (2005) 25-35.

Google Scholar

[17] L. Engelmeier et al. Liquid carbon dioxide jets for cutting applications J. The Journal of Supercritical Fluids. 69 (2012) 29-33.

DOI: 10.1016/j.supflu.2012.04.018

Google Scholar

[18] Daniel Krajcarz. Comparison Metal Water Jet Cutting with Laser and Plasma Cutting[A]. Procedia Engineering. 69 (2014) 838–843.

DOI: 10.1016/j.proeng.2014.03.061

Google Scholar

[19] Ching-Yu Hsua, Cho-Chung Liang. A numerical study on high-speed water jet impact J. Ocean Engineering. 72 (2013) 98–106.

Google Scholar

[20] Y.I. Oka, H. Hayashi. Evaluation of erosion resistance for metal–ceramic composites and cermets using a water-jet testing apparatus J. Wear. 271 (2011) 1397–1403.

DOI: 10.1016/j.wear.2010.11.040

Google Scholar

[21] K. Dadkhahipour, T. Nguyen, J. Wang. Mechanisms of channel formation on glasses by abrasive water jet milling J. Wear. 10 (2012) 292–293.

DOI: 10.1016/j.wear.2012.06.008

Google Scholar

[22] Amir Hossein Azimi, David Z. Zhu. Computational investigation of vertical slurry jets in water J. International Journal of Multiphase Flow. 47 (2012) 94–114.

DOI: 10.1016/j.ijmultiphaseflow.2012.07.002

Google Scholar

[23] J.M. Fan, H.Z. Li, J. Wang, C.Y. Wang. A study of the flow characteristics in micro-abrasive jets J. Experimental Thermal and Fluid Science. 35 (2011) 1097–1106.

DOI: 10.1016/j.expthermflusci.2011.03.004

Google Scholar

[24] T. Yo, E. Sh. An experimental investigation on the impingement of a planar jet of Al2O3–water nanofluid on a V-shaped plate J. Experimental Thermal and Fluid Science. 50 (2013) 114–126.

DOI: 10.1016/j.expthermflusci.2013.05.011

Google Scholar

[25] D.A. A, D.S. S, M.C. Ket al Abrasive water jet cutting of polycrystalline diamond: A preliminary investigation J. International Journal of Machinc Tools&Manufacture. 49 (2009) 797-803.

DOI: 10.1016/j.ijmachtools.2009.04.003

Google Scholar

[26] Jiuan-hung Ke, Feng-che Tsai, Jung-Chou Hung, Biing-hwa Yan. Characteristics study of flexible magnetic abrasive in abrasive jet machining. Procedia CIRP, 2012, (1): 679–680.

DOI: 10.1016/j.procir.2012.05.025

Google Scholar

[27] K. Kowsari, D.F. James. The effects of dilute polymer solution elasticity and viscosity on abrasive slurry jet micro-machining of glass. Wear. 309 (2014) 112–119.

DOI: 10.1016/j.wear.2013.11.011

Google Scholar

[28] T. Nguyen, D.K. Shanmugam, J. Wang. Effect of liquid properties on the stability of an abrasive water jet. International Journal of Machine Tools & Manufacture. 48 ( 2008) 112–119.

DOI: 10.1016/j.ijmachtools.2008.01.009

Google Scholar

[29] A. Alberdi et al. Composite Cutting with Abrasive Water Jet[A]. Procedia Engineering, 2013(63)421-429.

DOI: 10.1016/j.proeng.2013.08.217

Google Scholar

[30] S. Ally, J.K. Spelt, M. Papini. Prediction of machined surface evolution in the abrasive jet micro-machining of metals. Wear, 292-293(2012), 89–99.

DOI: 10.1016/j.wear.2012.05.029

Google Scholar

[31] A.G. Gradeena, J.K. Spelt, M. Papini. Cryogenic abrasive jet machining of polydimethylsiloxane at differenttemperatures. Wear, 274-275 (2012), 335–344.

DOI: 10.1016/j.wear.2011.09.013

Google Scholar

[32] Asif IQBAL, Naeem U DAR, Ghulam HUSSAIN. Optimization of Abrasive Water Jet Cutting of Ductile Materials J. Wuhan University of Tecnology and Springer-Verlag Berlin.

Google Scholar

[33] J, Wang, D.M. Guo. The cutting performance in multipass abrasive waterjet machining of industrial ceramics J. Journal of Materials Processing Technology. 133 (2003) 371-377.

DOI: 10.1016/s0924-0136(02)01125-1

Google Scholar

[34] G.V.S. Prasad, J. Wang, W.C.K. Wong, Kerf formation analysis in the abrasive waterjet machining of industrial ceramics[A], Shanghai, 1998, pp.213-220.

Google Scholar

[35] G. A Es, R. S Ga, K Ri. Characterisation of abrasive water-jet process for pocket milling in Inconel 718[A]. 2012(1): 404 – 408.

DOI: 10.1016/j.procir.2012.04.072

Google Scholar

[36] H. Nouraei et al. A comparison with abrasive air jet micro-machining J. Journal of Material processing Technology,. 213 (2013) 1711-1724.

DOI: 10.1016/j.jmatprotec.2013.03.024

Google Scholar

[47] B. Strnadel, L.M. Hlava, L. Gembalova. Effect of steel structure on the declination angle in AWJ cutting J. International Journal of Machine Tools & Manufacture, 64 (2013) 12–19.

DOI: 10.1016/j.ijmachtools.2012.07.015

Google Scholar

[38] W Li. An environmentally friendly approach for contaminants removal using supercritical CO2 for remanufacturing industry J. Applied Surface Science. 292 (2014) 142–148.

DOI: 10.1016/j.apsusc.2013.11.102

Google Scholar

[39] D Y, W R, NI Ho, et al. Dynamical analysis of high-pressure supercritical carbon dioxide jet in well drilling J. Journal of Hydrodynamics DOI: 10. 1016/S1001-6058(11)60392-3 528-533.

DOI: 10.1016/s1001-6058(11)60392-3

Google Scholar

[40] DU Yu-kun, WANG Rui-he, et al. The experiment of Supercritical Carbon Dioxide Jet in rock breaking J. Journal of China university of petroleum (natural science edition), 36(2012)93-96.

Google Scholar