Impact of Electromagnetic Radiation on the Human Organism

Article Preview

Abstract:

Interaction mechanisms and biological effects that different types of radiation could exert upon humans have been studied by many authors. Different studies investigated the reactions of various types of electrical equipment, power lines, mobile phones and other upon humans, their influence on the brain functions, public health or if magnetic fields (MFs) can be used for pain relief. Some authors found out that electromagnetic fields (EMFs) might be a factor which determined a number of chronic illnesses (cancer, heart diseases and sleep disorders) even to low intensity. But on the other side, because the EMFs are part of nature, being radiated by human body and its organs, the quality and intensity of the energy can either support or destroy health. Magnetic fields and electromagnetic fields are useful modalities to treat various pathologies and diseases. A number of clinical studies, in vivo animal experiments and in vitro cellular and membrane researches, suggested that EMFs and MFs stimulation reduce pain and accelerate the healing process. However, EMFs are still not widely used in clinical medicine. It is accepted that pain control occurs via a series of integrated stages, each with particular objectives essential to the tissue/system repairing processes. Electric and magnetic stimulation have been proven to provide beneficial and reproducible healing effects even when other methods have failed. As for the MFs, this is an excellent possibility as a non – invasive method to control and treat pain. Magnetic stimulation of a patient is different from drug treatment. As technology proliferates and people use more and more electronic devices, some researchers suspect EMFs contribute to a subtle assault upon people’s immune system and health. This paper aims to review the way that electromagnetic fields and other types of radiations interaction at molecular level with human organism.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

295-302

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Ahlbom, M. Feychting, Electromagnetic radiation, Br. Med. Bull. 68 (2003) 157-65.

Google Scholar

[2] Information on: http: /www. who. int.

Google Scholar

[3] N. Albert, M.F. Sherif, N.J. Papadopoulos, F. J. Slaby, J. Monahan, Effect of nonionizing radiation on the purkinje cells of the rat cerebellum, Bioelectromagnetics. 2 (1981)  247 – 257.

DOI: 10.1002/bem.2250020306

Google Scholar

[4] N. Deliu, V. Calota, Campurile electromagnetice si efectele asupra starii de sanatate, Comunicatii Mobile – Revista afacerilor Telecom Mobile Media. 64 (2006).

Google Scholar

[5] Information on: http: /jnci. oxfordjournals. org.

Google Scholar

[6] B. Dindić, S. Radić, D. Krstić, D. Sokolović, D. Petković, T. Pavlović, J. Radosavljević, Exposure to electromagnetic field by using mobile telephones and its influence on the brain functions, Facta Universitatis. 2 (2004) 311 – 316.

Google Scholar

[7] M. Mashevich, D. Folkman, A. Kesar, A. Barbul, R. Korenstein, E. Jerby, L. Avivi, Exposure of human peripheral blood lymphocytes to electromagnetic fields associated with cellular phones leads to chromosomal instability, Bioelectromagnetics. 24 (2003).

DOI: 10.1002/bem.10086

Google Scholar

[8] M.B. Zhang, J.L. He, L.F. Jin, D.Q. Lu, Study of low-intensity 2450-MHz microwave exposure enhancing the genotoxic effects of mitomycin C using micronucleus test and comet assay in vitro, Biomed. Environ. Sci. 15 (2002) 283-290.

Google Scholar

[9] A.A. Borbély, R. Huber, T. Graf, B. Fuchs, E. Gallmann, P. Achermann, Pulsed high frequency electromagnetic field affect human sleep and sleep electroencephalogram, Neurosci. Lett. 275 (1999) 207-210.

DOI: 10.1016/s0304-3940(99)00770-3

Google Scholar

[10] Vijayalaxmi, K.S. Bisht, W.F. Pickard, M.L. Meltz, J.L. Roti, E.G. Moros, Chromosome damage and micronucleus formation in human blood lymphocytes exposed in vitro to radiofrequency radiation at a cellular telephone frequency (847. 74 MHz, CDMA), Radiat. Res. 156 (2001).

DOI: 10.1667/0033-7587(2001)156[0430:cdamfi]2.0.co;2

Google Scholar

[11] Vijayalaxmi, L.B. Sasser, J.E. Morris, B.W. Wilson, L.E. Anderson, Genotoxic potential of 1. 6 GHz wireless communication signal: in vivo two-year bioassay. Radiat. Res. 159 (2003) 558–564.

DOI: 10.1667/0033-7587(2003)159[0558:gpogwc]2.0.co;2

Google Scholar

[12] C. Goiceanu, Contributii la studiul influentei campurilor electromagnetice asupra sistemelor biologice, Univ. Al. I Cuza Iasi, Facultatea de Fizica, (2003).

Google Scholar

[13] T.D. Utteridge, V. Gebski, J.W. Finnie, B. Vernon-Roberts, T.R. Kuchel, Long-term exposure of E-mu-Pim1 transgenic mice to 898. 4 MHz microwaves does not increase lymphoma incidence, Radiat. Res. 158 (2002) 357-364.

DOI: 10.1667/0033-7587(2002)158[0357:lteoep]2.0.co;2

Google Scholar

[14] M.H. Repacholi, A. Basten, V. Gebski, D. Noonan, J. Finnie, A.W. Harris, Lymphomas in Eµ-Pim1 transgenic mice exposed to pulsed 900 MHz electromagnetic field, Radiat. Res. 147 (1997) 631 – 640.

DOI: 10.2307/3579630

Google Scholar

[15] J.H. Bernhardt, Non-ionizing radiation safety: radiofrequency radiation, electric and magnetic fields. Phys. Med. Biol. 37 (1992) 807-844.

DOI: 10.1088/0031-9155/37/4/001

Google Scholar

[16] Information on: http: /www. icnirp. org.

Google Scholar

[17] H. Taskinen, P. Kyyrönen, K. Hemminki, Effects of ultrasound, shortwaves, and physical exertion on pregnancy outcome in physiotherapists, J. Epidemiol. Community. Health. 44 (1990) 196-201.

DOI: 10.1136/jech.44.3.196

Google Scholar

[18] D.R. Black, L.N. Heynick, Radiofrequency (RF) effects on blood cells, cardiac, endocrine, and immunological functions, Bioelectromagnetics. 6: S1 (2003) 87-95.

DOI: 10.1002/bem.10166

Google Scholar

[19] L. Kheifets, S. Oksuzyan, Exposure assessment and other challenges in non-ionizing radiation studies of childhood leukaemia, Radiat. Prot. Dosimetry. 132 (2008) 139-147.

DOI: 10.1093/rpd/ncn260

Google Scholar

[20] H.Q. Zhang, W. Y Pan, Electromagnetic field of a vertical electric dipole on a perfect conductor coated with a dielectric layer, Radio Sci. 37 (2002) 131-137.

DOI: 10.1029/2000rs002348

Google Scholar

[21] K.K. Karipidis, G. Benke, R. Malcolm Sim, K. Timo, G. Giles,  Occupational exposure to ionizing and non-ionizing radiation and risk of glioma, Occup. Med. 57 (2007) 518-524.

DOI: 10.1093/occmed/kqm078

Google Scholar

[22] L.J. Ravitz. History, measurement and applicability of periodic changes in the electromagnetic field in health and disease, Ann. N. Y. Acad. Sci. 98 (1962) 1144-1201.

DOI: 10.1111/j.1749-6632.1962.tb30626.x

Google Scholar

[23] J.M. Aran, N. Carrere, Y. Chalan, P.E. Dulou, S. Larrieu, L. Letenneur, B. Veyret, D. Dulon, Effects of exposure of the ear to GSM microwaves: in vivo and in vitro experimental studies. Int. J. Audiol. 43 (2004) 245-254.

DOI: 10.1080/14992020400050069

Google Scholar

[24] A. Auvinen, M. Hietanen, R. Luukkonen, R.S. Koskela, Brain tumours and salivary gland cancers among cellular telephone users, Epidemiology. 13 (2002) 356-359.

DOI: 10.1097/00001648-200205000-00018

Google Scholar

[25] B. Wang, H. Lai, Acute exposure to pulsed 2450-MHz microwaves affects water-maze performance of rats, Bioelectromagnetics. 21 (2000) 52-56.

DOI: 10.1002/(sici)1521-186x(200001)21:1<52::aid-bem8>3.0.co;2-6

Google Scholar

[26] L. Verschaeve, A. Maes, Genetic, carcinogenic and teratogenic effects of radiofrequency fields, Mutat. Res. 410 (1998) 141-165.

Google Scholar

[27] G. Monfrecola, G. Moffa, E.M. Procaccini Non-ionizing electromagnetic radiations, emitted by a cellular phone, modify cutaneous blood flow, Dermatology. 207 (2003) 10-14.

DOI: 10.1159/000070934

Google Scholar

[28] M. Mevissen, A. Lerchl, M. Szamel, W. Löscher, Exposure of DMBA-treated female rats in a 50-Hz, 50 microTesla magnetic field: effects on mammary tumor growth, melatonin levels, and T lymphocyte activation, Carcinogenesis. 17 (1996) 903-910.

DOI: 10.1093/carcin/17.5.903

Google Scholar

[29] S. Aalto, C. Haarala, A. Brück, H. Sipilä, H. Hämäläinen, J. O Rinne, Mobile phone affects cerebral blood flow in humans, J. Cereb. Blood. Flow. Metab. 26 (2006) 885–890.

DOI: 10.1038/sj.jcbfm.9600279

Google Scholar

[30] V. Rafnsson, E. Olafsdottir, J. Hrafnkelsson, H. Sasaki, A. Arnarsson, F. Jonasson, Cosmic radiation increases the risk of nuclear cataract in airline pilots: a population-based case-control study, Arch. Ophthalmol. 123 (2005) 1102–1105.

DOI: 10.1001/archopht.123.8.1102

Google Scholar

[31] J. Miyakoshi, K. Takemasa, Y. Takashima, G.R. Ding, H. Hirose, S. Koyama, Effects of exposure to a 1950 MHz radio frequency field on expression of Hsp70 and Hsp27 in human glioma cells, Bioelectromagnetics. 26 (2005) 251-257.

DOI: 10.1002/bem.20077

Google Scholar

[32] J.D. Jr Boice, R.E. Tarone, Cell phones, cancer, and children, J. Natl. Cancer. Inst. 103 (2011), 1211–1213.

Google Scholar

[33] World Health Organization, Health issues related to the use of handheld radio telephones and base transmitters, International Commission on Non-Ionizing Radiation Protection (ICNIRP), Health Phys. 70 (1996) 587-593.

Google Scholar