[1]
T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi, T. Yamamuro, Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W, J. Biomed. Mater. Res. 24 (1990) 721-734.
DOI: 10.1002/jbm.820240607
Google Scholar
[2]
T. Kokubo, H. Takadama, How useful is SBF in predicting in vivo bone bioactivity?, Biomaterials 27 (2006) 2907-2915.
DOI: 10.1016/j.biomaterials.2006.01.017
Google Scholar
[3]
ISO/FDIS 23317, Implants for surgery — In vitro evaluation for apatite-forming ability of implant materials, International Organization for Standardization (2007).
Google Scholar
[4]
H. Takadama, T. Kokubo, In vitro evaluation of bone bioactivity, in: T. Kokubo (Ed. ), Bioceramics and their clinical applications, Woodhead Publishing, Cambridge, 2008, pp.165-182.
DOI: 10.1533/9781845694227.1.165
Google Scholar
[5]
T. Yao, M. Hibino, S. Yamaguchi and H. Okada, U.S. Patent 8178066 (2012), Japan Patent 5261712 (2013).
Google Scholar
[6]
T. Yao, M. Hibino and T. Yabutsuka, U.S. Patent 8512732 (2013), Japan Patent 5252399 (2013).
Google Scholar
[7]
T. Yao, T. Yabutsuka, PCT Patent PCT/JP2012/76738 (2012).
Google Scholar
[8]
Designation C-633, Annual Book of ASTM Standards, Vol. 3. 01, American Society for Testing and Materials, 665-669 (1993).
Google Scholar
[9]
W. Lacefield, Hydroxylapatite coatings, in: L. L. Hench, J. Wilson (Eds. ), An Introduction to Bioceramics, World Sci. Singapore, 1993, pp.223-238.
DOI: 10.1142/9789814317351_0012
Google Scholar
[10]
H. Mizuno, T. Yabutsuka, T. Yao, Fabrication of bioactive apatite nuclei-precipitated titanium alloys by using sandblasting process, Key Eng. Mater. 529-530 (2013) 553-558.
DOI: 10.4028/www.scientific.net/kem.529-530.553
Google Scholar
[11]
T. Yabutsuka, H. Mizuno, R. Karashima, T. Yao, Fabrication of bioactive apatite nuclei precipitated Ti-15Mo-5Zr-3Al alloy by using doubled sandblasting process, Key Eng. Mater., 631, 231-235 (2015).
DOI: 10.4028/www.scientific.net/kem.631.231
Google Scholar