Fabrication of Bone-Like Apatite-Phosphatidylcholine Composite Thin Film by Biomimetic Method

Article Preview

Abstract:

When the pH or the temperature of a simulated body fluid (SBF) is raised, fine particles of calcium phosphate are precipitated. We found that this particle actively induces apatite formation in body fluid or SBF and named it Apatite Nucleus (AN). In this study, we fabricated bone-like apatite self-supporting thin film by biomimetic method using AN. We analyzed it by FE-SEM, EDX, TF-XRD and ICP. It was found that the film has similar crystallinity and Ca/P ratio to those of biological apatite and ca. 10 μm of thickness.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

40-44

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.J. Jarcho, J.L. Kay, R.H. Gumaer and H.P. Drobeck, Tissue, cellular and subcellular events at bone-ceramic hydroxyapatite interface, J. Bioeng. 1 (1977) 79-92.

Google Scholar

[2] R.Z. LeGeros, J.P. LeGeros, Dense hydroxyapatite, in: L. L. Hench, J. Wilson, (Eds), An Introduction to Bioceramics, World Scientific, Singapore, 1993, pp.139-180.

DOI: 10.1142/9789814317351_0009

Google Scholar

[3] R.Z. LeGeros, J.P. LeGeros, Hydroxyapatite, in: T. Kokubo, (Ed), Bioceramics and their clinical applications, Woodhead Publishing, Cambridge, 2008, pp.367-394.

DOI: 10.1533/9781845694227.2.367

Google Scholar

[4] H. Oonishi, H. Oonishi Jr and S.C. Kim, Clinical application of hydroxyapatite, in: T. Kokubo, (Ed), Bioceramics and their clinical applications, Woodhead Publishing, Cambridge, 2008, pp.606-687.

DOI: 10.1533/9781845694227.3.606

Google Scholar

[5] D.D. Deligianni, N.D. Katsala, P.G. Koutsoukos and Y.F. Missirlis, Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength, Biomaterials. 22 (2001) 87-96.

DOI: 10.1016/s0142-9612(00)00174-5

Google Scholar

[6] S.C. Rizzi, D.J. Heath, A.G.A. Coombes, N. Bock, M. Textor and S. Downes, Biodegradable polymer/hydroxyapatite composites: surface analysis and initial attachment of human osteoblasts, J. Biomed. Mater. Res. 55 (2001) 475-486.

DOI: 10.1002/1097-4636(20010615)55:4<475::aid-jbm1039>3.0.co;2-q

Google Scholar

[7] T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi, T. Yamamuro, Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W, J. Biomed. Mater. Res. 24 (1990) 721-734.

DOI: 10.1002/jbm.820240607

Google Scholar

[8] T. Kokubo, H. Takadama, How useful is SBF in predicting in vivo bone bioactivity?, Biomaterials 27 (2006) 2907-2915.

DOI: 10.1016/j.biomaterials.2006.01.017

Google Scholar

[9] ISO/FDIS 23317, Implants for surgery ― In vitro evaluation for apatite-forming ability of implant materials, International Organization for Standardization (2007).

Google Scholar

[10] H. Takadama, T, Kokubo, In vitro evaluation of bone bioactivity, in: T. Kokubo (Ed. ), Bioceramics and their clinical applications, Woodhead Publishing, Cambridge, 2008, pp.165-182.

DOI: 10.1533/9781845694227.1.165

Google Scholar

[11] T. Yao, M. Hibino, S. Yamaguchi and H. Okada, U.S. Patent No. 8178066 (2012), Japan Patent No. 5261712 (2013).

Google Scholar

[12] T. Yao, T. Yabutsuka, Biomimetic fabrication of hydroxyapatite microcapsules by using apatite nuclei, in: A. Mukherjee (Ed), Biomimetics, Learning from Nature, Intech, Vukovar, 2010, pp.273-288.

DOI: 10.5772/8786

Google Scholar

[13] T. Yao, M. Hibino and T. Yabutsuka, US Patent No. 8512732 (2013), Japan Patent No. 5252399 (2013).

Google Scholar