[1]
L. Galois, D. Mainard, J.P. Delagoutte, beta-tricalcium phosphate ceramic as a bone substitute in orthopaedic surgery, Int. Orthop. 26 (2002) 109–115.
DOI: 10.1007/s00264-001-0329-x
Google Scholar
[2]
S. Kwon, Y. Jun, S. Hong, I. Lee, H. Kim, Calcium phosphate bioceramics with various porosities and dissolution rates, J. Am. Ceram. Soc. 31 (2002) 3129–3131.
DOI: 10.1111/j.1151-2916.2002.tb00599.x
Google Scholar
[3]
T. Okuda, K. Ioku, I. Yonezawa, H. Minagi, G. Kawachi, Y. Gonda, H. Murayama, Y. Shibata, S. Minami, S. Kamihira, H. Kurosawa, T. Ikeda, The effect of the microstructure of β-tricalcium phosphate on the metabolism of subsequently formed bone tissue, Biomaterials 28 (2007).
DOI: 10.1016/j.biomaterials.2007.01.040
Google Scholar
[4]
K. Shiratori, K. Matsuzaka, Y. Koike, S. Murakami, M. Shimono and T. Inoue, Bone formation in β-tricalcium phosphate-filled bone defects of the rat femur: Morphometric analysis and expression of bone related protein mRNA, Biomed. Res. 26 (2005).
DOI: 10.2220/biomedres.26.51
Google Scholar
[5]
G. Daculsi, R.Z. LeGeros, E. Nery, K. Lynch, B. Kerebel, Transformation of biphasic calcium phosphate ceramics in vivo: Ultrastructural and physicochemical characterization, J. Biomed. Mater. Res. 23 (1989) 883–894.
DOI: 10.1002/jbm.820230806
Google Scholar
[6]
Y. Tanimoto, Y. Shibata, A. Murakami, T. Miyazaki, N. Nishiyama, Effect of varying HAp/TCP ratios in tape-cast biphasic calcium phosphate ceramics on response in-vitro, J. Hard Tissue Biol. 18 (2009) 71–76.
DOI: 10.2485/jhtb.18.71
Google Scholar
[7]
G. Daculsi, O. Laboux, O. Malard, P. Weiss, Current state of the art of biphasic calcium phosphate bioceramics, J. Mater. Sci. Mater. Med. 14 (2003) 195–200.
Google Scholar
[8]
G. Daculsi, P. Corre, O. Malard, R. Z. LeGeros, E. Goyenvalle, "Performance for bone ingrowth of biphasic calcium phosphate ceramic versus bovine bone substitute, Key Eng. Mater. 309–311 (2006) 1379–1382.
DOI: 10.4028/www.scientific.net/kem.309-311.1379
Google Scholar
[9]
G. Daculsi, Biphasic calcium phosphate concept applied to artificial bone, implant coating and injectable bone substitute, Biomaterials 19 (1998) 1473–1478.
DOI: 10.1016/s0142-9612(98)00061-1
Google Scholar
[10]
S. V. Dorozhkin, Calcium orthophosphate cements for biomedical application, J. Mater. Sci. 43 (2008) 3028–3057.
DOI: 10.1007/s10853-008-2527-z
Google Scholar
[11]
K. Ishikawa, K. Tsuru, T. K. Pham, M. Maruta, S. Matsuya, Fully-Interconnected Pore Forming Calcium Phosphate Cement, Key Eng. Mater. 493-494 (2011) 832-835.
DOI: 10.4028/www.scientific.net/kem.493-494.832
Google Scholar
[12]
A. A. Mirtchi, J. Lemaitre, N. Terao, Calcium phosphate cements: study of the beta-tricalcium phosphate-monocalcium phosphate system, Biomaterials 10 (1989) 475–480.
DOI: 10.1016/0142-9612(89)90089-6
Google Scholar
[13]
M. Bohner, H. P. Merkle, P. V. Landuyt, G. Trophardy, J. Lemaitre, Effect of several additives and their admixtures on the physico-chemical properties of a calcium phosphate cement, J. Mater. Sci. Mater. Med. 11 (2000) 111–116.
DOI: 10.1023/a:1008997118576
Google Scholar
[14]
S.M. Arifuzzaman, S. Rohani, Experimental study of brushite precipitation, J. Cryst. Growth. 267 (2004) 624-634.
DOI: 10.1016/j.jcrysgro.2004.04.024
Google Scholar