Regulation of DCPD Formation on β-TCP Granular Surface by Exposing Different Concentration of Acidic Calcium Phosphate Solution

Article Preview

Abstract:

Regulation of DCPD formation on β-TCP granules was achieved by exposing β-TCP granular with different concentration of acidic calcium phosphate solution. It was found that a higher amount of DCPD was formed when exposed β-TCP granular with the higher concentration of acidic calcium phosphate solution. Morphological observation shows that the surface of β-TCP granular was fully coated with DCPD crystals after exposed with the higher concentration of acidic calcium phosphate solution. These results demonstrated that the DCPD formation on the β-TCP granular surface could be regulated by varying the concentration of acidic calcium phosphate solution.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

27-31

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Galois, D. Mainard, J.P. Delagoutte, beta-tricalcium phosphate ceramic as a bone substitute in orthopaedic surgery, Int. Orthop. 26 (2002) 109–115.

DOI: 10.1007/s00264-001-0329-x

Google Scholar

[2] S. Kwon, Y. Jun, S. Hong, I. Lee, H. Kim, Calcium phosphate bioceramics with various porosities and dissolution rates, J. Am. Ceram. Soc. 31 (2002) 3129–3131.

DOI: 10.1111/j.1151-2916.2002.tb00599.x

Google Scholar

[3] T. Okuda, K. Ioku, I. Yonezawa, H. Minagi, G. Kawachi, Y. Gonda, H. Murayama, Y. Shibata, S. Minami, S. Kamihira, H. Kurosawa, T. Ikeda, The effect of the microstructure of β-tricalcium phosphate on the metabolism of subsequently formed bone tissue, Biomaterials 28 (2007).

DOI: 10.1016/j.biomaterials.2007.01.040

Google Scholar

[4] K. Shiratori, K. Matsuzaka, Y. Koike, S. Murakami, M. Shimono and T. Inoue, Bone formation in β-tricalcium phosphate-filled bone defects of the rat femur: Morphometric analysis and expression of bone related protein mRNA, Biomed. Res. 26 (2005).

DOI: 10.2220/biomedres.26.51

Google Scholar

[5] G. Daculsi, R.Z. LeGeros, E. Nery, K. Lynch, B. Kerebel, Transformation of biphasic calcium phosphate ceramics in vivo: Ultrastructural and physicochemical characterization, J. Biomed. Mater. Res. 23 (1989) 883–894.

DOI: 10.1002/jbm.820230806

Google Scholar

[6] Y. Tanimoto, Y. Shibata, A. Murakami, T. Miyazaki, N. Nishiyama, Effect of varying HAp/TCP ratios in tape-cast biphasic calcium phosphate ceramics on response in-vitro, J. Hard Tissue Biol. 18 (2009) 71–76.

DOI: 10.2485/jhtb.18.71

Google Scholar

[7] G. Daculsi, O. Laboux, O. Malard, P. Weiss, Current state of the art of biphasic calcium phosphate bioceramics, J. Mater. Sci. Mater. Med. 14 (2003) 195–200.

Google Scholar

[8] G. Daculsi, P. Corre, O. Malard, R. Z. LeGeros, E. Goyenvalle, "Performance for bone ingrowth of biphasic calcium phosphate ceramic versus bovine bone substitute, Key Eng. Mater. 309–311 (2006) 1379–1382.

DOI: 10.4028/www.scientific.net/kem.309-311.1379

Google Scholar

[9] G. Daculsi, Biphasic calcium phosphate concept applied to artificial bone, implant coating and injectable bone substitute, Biomaterials 19 (1998) 1473–1478.

DOI: 10.1016/s0142-9612(98)00061-1

Google Scholar

[10] S. V. Dorozhkin, Calcium orthophosphate cements for biomedical application, J. Mater. Sci. 43 (2008) 3028–3057.

DOI: 10.1007/s10853-008-2527-z

Google Scholar

[11] K. Ishikawa, K. Tsuru, T. K. Pham, M. Maruta, S. Matsuya, Fully-Interconnected Pore Forming Calcium Phosphate Cement, Key Eng. Mater. 493-494 (2011) 832-835.

DOI: 10.4028/www.scientific.net/kem.493-494.832

Google Scholar

[12] A. A. Mirtchi, J. Lemaitre, N. Terao, Calcium phosphate cements: study of the beta-tricalcium phosphate-monocalcium phosphate system, Biomaterials 10 (1989) 475–480.

DOI: 10.1016/0142-9612(89)90089-6

Google Scholar

[13] M. Bohner, H. P. Merkle, P. V. Landuyt, G. Trophardy, J. Lemaitre, Effect of several additives and their admixtures on the physico-chemical properties of a calcium phosphate cement, J. Mater. Sci. Mater. Med. 11 (2000) 111–116.

DOI: 10.1023/a:1008997118576

Google Scholar

[14] S.M. Arifuzzaman, S. Rohani, Experimental study of brushite precipitation, J. Cryst. Growth. 267 (2004) 624-634.

DOI: 10.1016/j.jcrysgro.2004.04.024

Google Scholar