Nanocrystalline Apatites: A Versatile Functionalizable Platform for Biomedical Applications for Bone Engineering… and beyond

Article Preview

Abstract:

This contribution gathers various examples illustrating the fact that nanocrystalline apatites represent a genuine multi-functionalizable platform for a wide range of biomedical applications. It is indeed possible to convey additional functionalities to the already appealing properties of biomimetic apatites, via appropriate ionic substitutions and/or through controlled molecular adsorptions. In link with bone regeneration, we depict here examples of enhanced osteoconduction/induction and of the addition of antibacterial features to bone implants. But we also point out the promise of apatite-based colloidal nanoparticles in other domains not related to bone, such as nanomedicine (cell diagnosis/therapy), which we address by conferring luminescence properties and by adding cell recognition abilities.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

14-22

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.O. Wagner, P. Aspenberg. Where did bone come from?, Acta Orthopaedica 82 (2011) 393-398.

DOI: 10.3109/17453674.2011.588861

Google Scholar

[2] J.P. Bonjour. Calcium and Phosphate: A Duet of Ions Playing for Bone Health, Journal of the American College of Nutrition 30 (2011) 438S-448S.

DOI: 10.1080/07315724.2011.10719988

Google Scholar

[3] F.C.M. Driessens, J.W.E. Vandijk, R.M.H. Verbeeck. THE ROLE OF BONE-MINERAL IN CALCIUM AND PHOSPHATE HOMEOSTASIS, Bulletin Des Societes Chimiques Belges 95 (1986) 337-342.

DOI: 10.1002/bscb.19860950508

Google Scholar

[4] R.Z. LeGeros. Calcium Phosphate-Based Osteoinductive Materials, Chemical Reviews 108 (2008) 4742-4753.

DOI: 10.1021/cr800427g

Google Scholar

[5] Q.L. Luo, J.D. Andrade. Cooperative adsorption of proteins onto hydroxyapatite, Journal of Colloid and Interface Science 200 (1998) 104-113.

DOI: 10.1006/jcis.1997.5364

Google Scholar

[6] S. Cazalbou, C. Combes, D. Eichert, C. Rey, M.J. Glimcher. Poorly crystalline apatites: evolution and maturation in vitro and in vivo, Journal of Bone and Mineral Metabolism 22 (2004) 310-317.

DOI: 10.1007/s00774-004-0488-0

Google Scholar

[7] D. Eichert, H. Sfihi, C. Combes, C. Rey. Specific characteristics of wet nanocrystalline apatites. Consequences on biomaterials and bone tissue, Bioceramics, Vol 16 254-2 (2004) 927-930.

DOI: 10.4028/www.scientific.net/kem.254-256.927

Google Scholar

[8] C. Rey, J. Lian, M. Grynpas, F. Shapiro, L. Zylberberg, M.J. Glimcher. Non-apatitic environments in bone mineral: FT-IR detection, biological properties and changes in several disease states, Connective tissue research 21 (1989) 267-273.

DOI: 10.3109/03008208909050016

Google Scholar

[9] N. Vandecandelaere, C. Rey, C. Drouet. Biomimetic apatite-based biomaterials: on the critical impact of synthesis and post-synthesis parameters, Journal of Materials Science-Materials in Medicine 23 (2012) 2593-2606.

DOI: 10.1007/s10856-012-4719-y

Google Scholar

[10] C. Drouet, M. -T. Carayon, C. Combes, C. Rey. Surface enrichment of biomimetic apatites with biologically-active ions Mg2+ and Sr2+: A preamble to the activation of bone repair materials, Materials Science and Engineering C 28 (2008) 1544-1550.

DOI: 10.1016/j.msec.2008.04.011

Google Scholar

[11] C. Drouet, J. Gomez-Morales, M. Iafisco, S. Sarda. Calcium phosphate surface tailoring technologies for drug delivering and tissue engineering. in: Rimondini L, Bianchi CL, Vernè E, (Eds. ). Surface Tailoring of Inorganic Materials for Biomedical Applications L. Rimondini, C.L. Bianchi, E. Vernè. Bentham Science, e-book, 2012. pp.43-111.

DOI: 10.2174/978160805462611201010043

Google Scholar

[12] L. Benaziz, A. Barroug, A. Legrouri, C. Rey, A. Lebugle. Adsorption of O-phospho-L-serine and L-serine onto poorly crystalline apatite, Journal of Colloid and Interface Science 238 (2001) 48-53.

DOI: 10.1006/jcis.2001.7450

Google Scholar

[13] N. Bihi, M. Bennani-Ziatni, A. Taitai, A. Lebugle. Adsorption of aminoacids onto bone-like carbonated calcium phosphates, Annales De Chimie-Science Des Materiaux 27 (2002) 61-70.

DOI: 10.1016/s0151-9107(02)80033-2

Google Scholar

[14] M. Choimet, A. Tourrette, C. Drouet. Adsorption of nucleotides on biomimetic apatite: The case of cytidine 5' monophosphate (CMP), Journal of Colloid and Interface Science 456 (2015) 132-137.

DOI: 10.1016/j.jcis.2015.06.021

Google Scholar

[15] C. Combes, C. Rey. Adsorption of proteins and calcium phosphate materials bioactivity, Biomaterials 23 (2002) 2817-2823.

DOI: 10.1016/s0142-9612(02)00073-x

Google Scholar

[16] A. Grunenwald, C. Keyser, A.M. Sautereau, E. Crubezy, B. Ludes, C. Drouet. Adsorption of DNA on biomimetic apatites: Toward the understanding of the role of bone and tooth mineral on the preservation of ancient DNA, Applied Surface Science 292 (2014).

DOI: 10.1016/j.apsusc.2013.12.063

Google Scholar

[17] K. Hammami, H.E. Feki, O. Marsan, C. Drouet. Adsorption of nucleotides on biomimetic apatite: The case of adenosine 5' monophosphate (AMP), Applied Surface Science 353 (2015) 165-172.

DOI: 10.1016/j.apsusc.2015.06.068

Google Scholar

[18] M. Iafisco, E. Varoni, M. Di Foggia, S. Pietronave, M. Fini, N. Roveri, L. Rimondini, M. Prat. Conjugation of hydroxyapatite nanocrystals with human immunoglobulin G for nanomedical applications, Colloids and Surfaces B-Biointerfaces 90 (2012).

DOI: 10.1016/j.colsurfb.2011.09.033

Google Scholar

[19] V. Midy, C. Rey, E. Bres, M. Dard. Basic fibroblast growth factor adsorption and release properties of calcium phosphate, Journal of Biomedical Materials Research 41 (1998) 405-411.

DOI: 10.1002/(sici)1097-4636(19980905)41:3<405::aid-jbm10>3.0.co;2-h

Google Scholar

[20] H. AUTEFAGE, F. BRIAND-MESANGE, S. CAZALBOU, C. DROUET, D. FOURMY, S. GONCALVES, J. SALLES, C. COMBES, P. SWIDER, C. REY. Adsorption and Release of BMP-2 on Nanocrystalline Apatite-Coated and Uncoated Hydroxyapatite/beta-Tricalcium Phosphate Porous Ceramics, JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS 91B (2009).

DOI: 10.1002/jbm.b.31447

Google Scholar

[21] C.G. Weber, M. Mueller, N. Vandecandelaere, I. Trick, A. Burger-Kentischer, T. Maucher, C. Drouet. Enzyme-functionalized biomimetic apatites: concept and perspectives in view of innovative medical approaches, Journal of Materials Science-Materials in Medicine 25 (2014).

DOI: 10.1007/s10856-013-5097-9

Google Scholar

[22] A. Barroug, M.J. Glimcher. Hydroxyapatite crystals as a local delivery system for cisplatin: adsorption and release of cisplatin in vitro, Journal of Orthopaedic Research 20 (2002) 274-280.

DOI: 10.1016/s0736-0266(01)00105-x

Google Scholar

[23] R. Bosco, M. Iafisco, J. van den Beucken, S. Leeuwenburgh, J. Jansen. Adsorption of alendronate onto biomimetic apatite nanocrystals to develop drug carrier coating for bone implants, Bioceramics 24 529-530 (2013) 475-479.

DOI: 10.4028/www.scientific.net/kem.529-530.475

Google Scholar

[24] S. Cazalbou, G. Bertrand, C. Drouet. Tetracycline-Loaded Biomimetic Apatite: An Adsorption Study, The Journal of Physical Chemistry B 119 (2015) 3014-3024.

DOI: 10.1021/jp5116756

Google Scholar

[25] C.A.S. de Souza, A.P.V. Colombo, R.M. Souto, C.M. Silva-Boghossian, J.M. Granjeiro, G.G. Alves, A.M. Rossi, M.H.M. Rocha-Leao. Adsorption of chlorhexidine on synthetic hydroxyapatite and in vitro biological activity, Colloids and Surfaces B-Biointerfaces 87 (2011).

DOI: 10.1016/j.colsurfb.2011.05.035

Google Scholar

[26] M. Iafisco, B. Palazzo, G. Martra, N. Margiotta, S. Piccinonna, G. Natile, V. Gandin, C. Marzano, N. Roveri. Nanocrystalline carbonate-apatites: role of Ca/P ratio on the upload and release of anticancer platinum bisphosphonates, Nanoscale 4 (2012).

DOI: 10.1039/c1nr11147g

Google Scholar

[27] B. Palazzo, M. Iafisco, M. Laforgia, N. Margiotta, G. Natile, C.L. Bianchi, D. Walsh, S. Mann, N. Roveri. Biomimetic hydroxyapatite-drug nanocrystals as potential bone substitutes with antitumor drug delivery properties, Advanced Functional Materials 17 (2007).

DOI: 10.1002/adfm.200600361

Google Scholar

[28] P. Pascaud, F. Errassifi, F. Brouillet, S. Sarda, A. Barroug, A. Legrouri, C. Rey. Adsorption on apatitic calcium phosphates for drug delivery: interaction with bisphosphonate molecules, Journal of Materials Science-Materials in Medicine 25 (2014).

DOI: 10.1007/s10856-014-5218-0

Google Scholar

[29] C. Drouet. Apatite Formation: Why It May Not Work as Planned, and How to Conclusively Identify Apatite Compounds, Biomed Research International (2013) 12.

DOI: 10.1155/2013/490946

Google Scholar

[30] H. Autefage. Ph.D. Thesis - Rôle ostéoinducteur d'un revêtement d'apatite carbonatée nanocristalline sur des céramiques de phosphate de calcium biphasique - INP Toulouse. 2009 (171 p. ).

Google Scholar

[31] C. Drouet, J. Gómez-Morales, M. Iafisco, S. Sarda, Calcium Phosphate Surface Tailoring Technologies for Drug Delivering and Tissue Engineering and applied aspects, in: L. Rimondini, C. L. Bianchi and E. Vernè (Eds. ), Surface Tailoring of Inorganic Materials for Biomedical Applications. 2012, e-book, eISBN 978-1-60805-462-6, pp.43-111.

DOI: 10.2174/978160805462611201010043

Google Scholar

[32] M. Iafisco, J. Manuel Delgado-Lopez, E.M. Varoni, A. Tampieri, L. Rimondini, J. Gomez-Morales, M. Prat. Cell Surface Receptor Targeted Biomimetic Apatite Nanocrystals for Cancer Therapy, Small 9 (2013) 3834-3844.

DOI: 10.1002/smll.201202843

Google Scholar

[33] I. Rodriguez-Ruiz, J. Manuel Delgado-Lopez, M.A. Duran-Olivencia, M. Iafisco, A. Tampieri, D. Colangelo, M. Prat, J. Gomez-Morales. pH-Responsive Delivery of Doxorubicin from Citrate-Apatite Nanocrystals with Tailored Carbonate Content, Langmuir 29 (2013).

DOI: 10.1021/la4008334

Google Scholar

[34] A. Al-Kattan, V. Santran, P. Dufour, J. Dexpert-Ghys, C. Drouet. Novel contributions on luminescent apatite-based colloids intended for medical imaging, Journal of Biomaterials Applications 28 (2014) 697-707.

DOI: 10.1177/0885328212473510

Google Scholar

[35] A. BOULADJINE, A. AL-KATTAN, P. DUFOUR, C. DROUET. New Advances in Nanocrystalline Apatite Colloids Intended for Cellular Drug Delivery, LANGMUIR 25 (2009) 12256-12265.

DOI: 10.1021/la901671j

Google Scholar

[36] D. C, Al-Kattan A, Choimet M, Tourrette A, Santran V, J. Dexpert-Ghys, B. Pipy, F. Brouillet, M. Tourbin. Biomimetic Apatite-Based Functional Nanoparticles as Promising Newcomers in Nanomedicine: Overview of 10 Years of Initiatory Research, HSOA Journal of General Practice and Medical Diagnosis (GPMD) 1 (2015).

DOI: 10.24966/imph-2493/100001

Google Scholar

[37] A. Doat, M. Fanjul, F. Pelle, E. Hollande, A. Lebugle. Europium-doped bioapatite: a new photostable biological probe, internalizable by human cells, Biomaterials 24 (2003) 3365-3371.

DOI: 10.1016/s0142-9612(03)00169-8

Google Scholar

[38] V.V. Sokolova, I. Radtke, R. Heumann, M. Epple. Effective transfection of cells with multi-shell calcium phosphate-DNA nanoparticles, Biomaterials 27 (2006) 3147-3153.

DOI: 10.1016/j.biomaterials.2005.12.030

Google Scholar

[39] A. AL-KATTAN, P. DUFOUR, J. DEXPERT-GHYS, C. DROUET. Preparation and Physicochemical Characteristics of Luminescent Apatite-Based Colloids, JOURNAL OF PHYSICAL CHEMISTRY C 114 (2010) 2918-2924. Patent.

DOI: 10.1021/jp910923g

Google Scholar

[40] H. AUTEFAGE, S. CAZALBOU, C. COMBES, C. REY. Porous biomaterials surface activation method, US patent n°12/487, 101 (2009).

Google Scholar