[1]
D.O. Wagner, P. Aspenberg. Where did bone come from?, Acta Orthopaedica 82 (2011) 393-398.
DOI: 10.3109/17453674.2011.588861
Google Scholar
[2]
J.P. Bonjour. Calcium and Phosphate: A Duet of Ions Playing for Bone Health, Journal of the American College of Nutrition 30 (2011) 438S-448S.
DOI: 10.1080/07315724.2011.10719988
Google Scholar
[3]
F.C.M. Driessens, J.W.E. Vandijk, R.M.H. Verbeeck. THE ROLE OF BONE-MINERAL IN CALCIUM AND PHOSPHATE HOMEOSTASIS, Bulletin Des Societes Chimiques Belges 95 (1986) 337-342.
DOI: 10.1002/bscb.19860950508
Google Scholar
[4]
R.Z. LeGeros. Calcium Phosphate-Based Osteoinductive Materials, Chemical Reviews 108 (2008) 4742-4753.
DOI: 10.1021/cr800427g
Google Scholar
[5]
Q.L. Luo, J.D. Andrade. Cooperative adsorption of proteins onto hydroxyapatite, Journal of Colloid and Interface Science 200 (1998) 104-113.
DOI: 10.1006/jcis.1997.5364
Google Scholar
[6]
S. Cazalbou, C. Combes, D. Eichert, C. Rey, M.J. Glimcher. Poorly crystalline apatites: evolution and maturation in vitro and in vivo, Journal of Bone and Mineral Metabolism 22 (2004) 310-317.
DOI: 10.1007/s00774-004-0488-0
Google Scholar
[7]
D. Eichert, H. Sfihi, C. Combes, C. Rey. Specific characteristics of wet nanocrystalline apatites. Consequences on biomaterials and bone tissue, Bioceramics, Vol 16 254-2 (2004) 927-930.
DOI: 10.4028/www.scientific.net/kem.254-256.927
Google Scholar
[8]
C. Rey, J. Lian, M. Grynpas, F. Shapiro, L. Zylberberg, M.J. Glimcher. Non-apatitic environments in bone mineral: FT-IR detection, biological properties and changes in several disease states, Connective tissue research 21 (1989) 267-273.
DOI: 10.3109/03008208909050016
Google Scholar
[9]
N. Vandecandelaere, C. Rey, C. Drouet. Biomimetic apatite-based biomaterials: on the critical impact of synthesis and post-synthesis parameters, Journal of Materials Science-Materials in Medicine 23 (2012) 2593-2606.
DOI: 10.1007/s10856-012-4719-y
Google Scholar
[10]
C. Drouet, M. -T. Carayon, C. Combes, C. Rey. Surface enrichment of biomimetic apatites with biologically-active ions Mg2+ and Sr2+: A preamble to the activation of bone repair materials, Materials Science and Engineering C 28 (2008) 1544-1550.
DOI: 10.1016/j.msec.2008.04.011
Google Scholar
[11]
C. Drouet, J. Gomez-Morales, M. Iafisco, S. Sarda. Calcium phosphate surface tailoring technologies for drug delivering and tissue engineering. in: Rimondini L, Bianchi CL, Vernè E, (Eds. ). Surface Tailoring of Inorganic Materials for Biomedical Applications L. Rimondini, C.L. Bianchi, E. Vernè. Bentham Science, e-book, 2012. pp.43-111.
DOI: 10.2174/978160805462611201010043
Google Scholar
[12]
L. Benaziz, A. Barroug, A. Legrouri, C. Rey, A. Lebugle. Adsorption of O-phospho-L-serine and L-serine onto poorly crystalline apatite, Journal of Colloid and Interface Science 238 (2001) 48-53.
DOI: 10.1006/jcis.2001.7450
Google Scholar
[13]
N. Bihi, M. Bennani-Ziatni, A. Taitai, A. Lebugle. Adsorption of aminoacids onto bone-like carbonated calcium phosphates, Annales De Chimie-Science Des Materiaux 27 (2002) 61-70.
DOI: 10.1016/s0151-9107(02)80033-2
Google Scholar
[14]
M. Choimet, A. Tourrette, C. Drouet. Adsorption of nucleotides on biomimetic apatite: The case of cytidine 5' monophosphate (CMP), Journal of Colloid and Interface Science 456 (2015) 132-137.
DOI: 10.1016/j.jcis.2015.06.021
Google Scholar
[15]
C. Combes, C. Rey. Adsorption of proteins and calcium phosphate materials bioactivity, Biomaterials 23 (2002) 2817-2823.
DOI: 10.1016/s0142-9612(02)00073-x
Google Scholar
[16]
A. Grunenwald, C. Keyser, A.M. Sautereau, E. Crubezy, B. Ludes, C. Drouet. Adsorption of DNA on biomimetic apatites: Toward the understanding of the role of bone and tooth mineral on the preservation of ancient DNA, Applied Surface Science 292 (2014).
DOI: 10.1016/j.apsusc.2013.12.063
Google Scholar
[17]
K. Hammami, H.E. Feki, O. Marsan, C. Drouet. Adsorption of nucleotides on biomimetic apatite: The case of adenosine 5' monophosphate (AMP), Applied Surface Science 353 (2015) 165-172.
DOI: 10.1016/j.apsusc.2015.06.068
Google Scholar
[18]
M. Iafisco, E. Varoni, M. Di Foggia, S. Pietronave, M. Fini, N. Roveri, L. Rimondini, M. Prat. Conjugation of hydroxyapatite nanocrystals with human immunoglobulin G for nanomedical applications, Colloids and Surfaces B-Biointerfaces 90 (2012).
DOI: 10.1016/j.colsurfb.2011.09.033
Google Scholar
[19]
V. Midy, C. Rey, E. Bres, M. Dard. Basic fibroblast growth factor adsorption and release properties of calcium phosphate, Journal of Biomedical Materials Research 41 (1998) 405-411.
DOI: 10.1002/(sici)1097-4636(19980905)41:3<405::aid-jbm10>3.0.co;2-h
Google Scholar
[20]
H. AUTEFAGE, F. BRIAND-MESANGE, S. CAZALBOU, C. DROUET, D. FOURMY, S. GONCALVES, J. SALLES, C. COMBES, P. SWIDER, C. REY. Adsorption and Release of BMP-2 on Nanocrystalline Apatite-Coated and Uncoated Hydroxyapatite/beta-Tricalcium Phosphate Porous Ceramics, JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS 91B (2009).
DOI: 10.1002/jbm.b.31447
Google Scholar
[21]
C.G. Weber, M. Mueller, N. Vandecandelaere, I. Trick, A. Burger-Kentischer, T. Maucher, C. Drouet. Enzyme-functionalized biomimetic apatites: concept and perspectives in view of innovative medical approaches, Journal of Materials Science-Materials in Medicine 25 (2014).
DOI: 10.1007/s10856-013-5097-9
Google Scholar
[22]
A. Barroug, M.J. Glimcher. Hydroxyapatite crystals as a local delivery system for cisplatin: adsorption and release of cisplatin in vitro, Journal of Orthopaedic Research 20 (2002) 274-280.
DOI: 10.1016/s0736-0266(01)00105-x
Google Scholar
[23]
R. Bosco, M. Iafisco, J. van den Beucken, S. Leeuwenburgh, J. Jansen. Adsorption of alendronate onto biomimetic apatite nanocrystals to develop drug carrier coating for bone implants, Bioceramics 24 529-530 (2013) 475-479.
DOI: 10.4028/www.scientific.net/kem.529-530.475
Google Scholar
[24]
S. Cazalbou, G. Bertrand, C. Drouet. Tetracycline-Loaded Biomimetic Apatite: An Adsorption Study, The Journal of Physical Chemistry B 119 (2015) 3014-3024.
DOI: 10.1021/jp5116756
Google Scholar
[25]
C.A.S. de Souza, A.P.V. Colombo, R.M. Souto, C.M. Silva-Boghossian, J.M. Granjeiro, G.G. Alves, A.M. Rossi, M.H.M. Rocha-Leao. Adsorption of chlorhexidine on synthetic hydroxyapatite and in vitro biological activity, Colloids and Surfaces B-Biointerfaces 87 (2011).
DOI: 10.1016/j.colsurfb.2011.05.035
Google Scholar
[26]
M. Iafisco, B. Palazzo, G. Martra, N. Margiotta, S. Piccinonna, G. Natile, V. Gandin, C. Marzano, N. Roveri. Nanocrystalline carbonate-apatites: role of Ca/P ratio on the upload and release of anticancer platinum bisphosphonates, Nanoscale 4 (2012).
DOI: 10.1039/c1nr11147g
Google Scholar
[27]
B. Palazzo, M. Iafisco, M. Laforgia, N. Margiotta, G. Natile, C.L. Bianchi, D. Walsh, S. Mann, N. Roveri. Biomimetic hydroxyapatite-drug nanocrystals as potential bone substitutes with antitumor drug delivery properties, Advanced Functional Materials 17 (2007).
DOI: 10.1002/adfm.200600361
Google Scholar
[28]
P. Pascaud, F. Errassifi, F. Brouillet, S. Sarda, A. Barroug, A. Legrouri, C. Rey. Adsorption on apatitic calcium phosphates for drug delivery: interaction with bisphosphonate molecules, Journal of Materials Science-Materials in Medicine 25 (2014).
DOI: 10.1007/s10856-014-5218-0
Google Scholar
[29]
C. Drouet. Apatite Formation: Why It May Not Work as Planned, and How to Conclusively Identify Apatite Compounds, Biomed Research International (2013) 12.
DOI: 10.1155/2013/490946
Google Scholar
[30]
H. Autefage. Ph.D. Thesis - Rôle ostéoinducteur d'un revêtement d'apatite carbonatée nanocristalline sur des céramiques de phosphate de calcium biphasique - INP Toulouse. 2009 (171 p. ).
Google Scholar
[31]
C. Drouet, J. Gómez-Morales, M. Iafisco, S. Sarda, Calcium Phosphate Surface Tailoring Technologies for Drug Delivering and Tissue Engineering and applied aspects, in: L. Rimondini, C. L. Bianchi and E. Vernè (Eds. ), Surface Tailoring of Inorganic Materials for Biomedical Applications. 2012, e-book, eISBN 978-1-60805-462-6, pp.43-111.
DOI: 10.2174/978160805462611201010043
Google Scholar
[32]
M. Iafisco, J. Manuel Delgado-Lopez, E.M. Varoni, A. Tampieri, L. Rimondini, J. Gomez-Morales, M. Prat. Cell Surface Receptor Targeted Biomimetic Apatite Nanocrystals for Cancer Therapy, Small 9 (2013) 3834-3844.
DOI: 10.1002/smll.201202843
Google Scholar
[33]
I. Rodriguez-Ruiz, J. Manuel Delgado-Lopez, M.A. Duran-Olivencia, M. Iafisco, A. Tampieri, D. Colangelo, M. Prat, J. Gomez-Morales. pH-Responsive Delivery of Doxorubicin from Citrate-Apatite Nanocrystals with Tailored Carbonate Content, Langmuir 29 (2013).
DOI: 10.1021/la4008334
Google Scholar
[34]
A. Al-Kattan, V. Santran, P. Dufour, J. Dexpert-Ghys, C. Drouet. Novel contributions on luminescent apatite-based colloids intended for medical imaging, Journal of Biomaterials Applications 28 (2014) 697-707.
DOI: 10.1177/0885328212473510
Google Scholar
[35]
A. BOULADJINE, A. AL-KATTAN, P. DUFOUR, C. DROUET. New Advances in Nanocrystalline Apatite Colloids Intended for Cellular Drug Delivery, LANGMUIR 25 (2009) 12256-12265.
DOI: 10.1021/la901671j
Google Scholar
[36]
D. C, Al-Kattan A, Choimet M, Tourrette A, Santran V, J. Dexpert-Ghys, B. Pipy, F. Brouillet, M. Tourbin. Biomimetic Apatite-Based Functional Nanoparticles as Promising Newcomers in Nanomedicine: Overview of 10 Years of Initiatory Research, HSOA Journal of General Practice and Medical Diagnosis (GPMD) 1 (2015).
DOI: 10.24966/imph-2493/100001
Google Scholar
[37]
A. Doat, M. Fanjul, F. Pelle, E. Hollande, A. Lebugle. Europium-doped bioapatite: a new photostable biological probe, internalizable by human cells, Biomaterials 24 (2003) 3365-3371.
DOI: 10.1016/s0142-9612(03)00169-8
Google Scholar
[38]
V.V. Sokolova, I. Radtke, R. Heumann, M. Epple. Effective transfection of cells with multi-shell calcium phosphate-DNA nanoparticles, Biomaterials 27 (2006) 3147-3153.
DOI: 10.1016/j.biomaterials.2005.12.030
Google Scholar
[39]
A. AL-KATTAN, P. DUFOUR, J. DEXPERT-GHYS, C. DROUET. Preparation and Physicochemical Characteristics of Luminescent Apatite-Based Colloids, JOURNAL OF PHYSICAL CHEMISTRY C 114 (2010) 2918-2924. Patent.
DOI: 10.1021/jp910923g
Google Scholar
[40]
H. AUTEFAGE, S. CAZALBOU, C. COMBES, C. REY. Porous biomaterials surface activation method, US patent n°12/487, 101 (2009).
Google Scholar