Densification Behaviors in the Early Stage of Spark Plasma Sintering of 3Y-TZP Nanoceramics

Article Preview

Abstract:

The early-stage sintering behaviours of 3 mol% yttria-stabilized tetragonal zirconia polycrystal (3Y-TZP) ceramics during spark plasma sintering (SPS) was investigated using different pressure and heating regimes.It was found that dependent neither on pressure value (20~100 MPa) nor heating rates higher than 50 °C/min, the maximum densification rate had always been observed at rather similar ~78% of theoretical density (TD), where the grain growth was rather moderate. A novel intensive-particle-rearrangement mechanism was proposed to dominate the rapid densification of early-stage SPS process, by which yielded the considerable faster densification rate than those achievable by diffusion-related processes.Present findings showed the possibility of particle rearrangement in high density compacts and the effects of classic particle rearrangement should be re-evaluated in nanoceramic sintering.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

173-177

Citation:

Online since:

July 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Munir ZA, Quach DV, Ohyanagi M. J Am Ceram Soc 2010; 94(1): 1-19.

Google Scholar

[2] Omori M. Mater Sci & Engi 2000; A287: 183-8.

Google Scholar

[3] Olevsky EA, Bradbury WL, Haines CD, et al. J Am Ceram Soc 2012; 95(8): 2406-13.

Google Scholar

[4] Hulbert DM, Anders A, Andersson J, et al. Scripta Mater 2009; 60: 835-8.

Google Scholar

[5] Munir ZA, Anselmi-Tamburini U, Ohyanagi M. J Mater Sci 2006; 41: 763-77.

Google Scholar

[6] Olevsky EA. J Appl Phys 2007; 102: 114913.

Google Scholar

[7] Langer J, Hoffmann MJ, O Guillon. Acta Mater 2009; 57: 5454-65.

Google Scholar

[8] Shen ZJ, Johnsson M, Zhao Z, Nygren M. J Am Ceram Soc 2002; 85(8): 1921-7.

Google Scholar

[9] Shen ZJ, Peng H, Liu J, Nygren M. J Eur Ceram Soc 2004; 24: 3447-52.

Google Scholar

[10] Xiong Y, Hu JF, Shen ZJ, Pouchly V, Maca K. J Am Ceram Soc 2011; 94(12): 4269-73.

Google Scholar

[11] G. Bernard-Granger and C. Guizarda, Acta Mater., 55, 3493-3504 (2007).

Google Scholar

[12] S.J.L. Kang, Sintering, Densification, Grain Growth and Microstructure, Oxford, Elsevier Butterworh-Heinemann (2005).

Google Scholar

[13] M.N. Rahaman, Sintering of Ceramics, New York, Taylor & Francis (2008).

Google Scholar

[14] P.L. Chen and I.W. Chen, J. Am. Ceram. Soc., 80, 637-645 (1997).

Google Scholar

[15] G. Gernard-Granger and C. Guizard, J. Am. Ceram. Soc., 90, 1246-1250 (2007).

Google Scholar

[16] M. Mazaheri, A. Simchi and F. Golestani-Fard, J. Eur. Ceram. Soc., 2, 2933-2939 (2008).

Google Scholar

[17] G. Bernard-Granger, A. Addad, G. Fantozzi, G. Bonnefnt, C. Guizarda and D. Vernat, Acta Mater., 58, 3390-3399 (2010).

DOI: 10.1016/j.actamat.2010.02.013

Google Scholar

[18] J. Luo, Appl. Phys. Letts., 95, 071911 (2009).

Google Scholar

[19] U. Anselmi-Tamburini, J.E. Garay and Z.A. Munir, Scripta Mater., 51, 823-828 (2006).

Google Scholar