[1]
Riley, F.L., Silicon Nitride and Related Materials. Journal of the American Ceramic Society, 2000. 83(2): pp.245-65.
Google Scholar
[2]
Khader, I., et al., Thermal and corrosion properties of silicon nitride for copper die casting components. Journal of the European Ceramic Society, 2013. 33(3): pp.593-602.
DOI: 10.1016/j.jeurceramsoc.2012.10.005
Google Scholar
[3]
Khader, I., et al., Wear and corrosion of silicon nitride rolling tools in copper rolling. Wear, 2011. 271(9-10): pp.2531-2541.
DOI: 10.1016/j.wear.2010.12.071
Google Scholar
[4]
Danzer, R. and M. Lengauer, Silicon nitride materials for hot working of high strength metal wires. Engineering Failure Analysis, 2010. 17(3): pp.596-606.
DOI: 10.1016/j.engfailanal.2009.05.003
Google Scholar
[5]
Han, I. -S., et al., Properties of silicon nitride for aluminum melts prepared by nitrided pressureless sintering. Journal of the European Ceramic Society, 2008. 28(5): pp.1057-1063.
DOI: 10.1016/j.jeurceramsoc.2007.09.032
Google Scholar
[6]
Bocanegra-Bernal, M.H. and B. Matovic, Mechanical properties of silicon nitride-based ceramics and its use in structural applications at high temperatures. Materials Science and Engineering: A, 2010. 527(6): pp.1314-1338.
DOI: 10.1016/j.msea.2009.09.064
Google Scholar
[7]
German, R.M., P. Suri, and S.J. Park, Review: liquid phase sintering. Journal of Materials Science, 2008. 44(1): pp.1-39.
Google Scholar
[8]
Eser, O. and S. Kurama, A comparison of sintering techniques using different particle sized β-SiAlON powders. Journal of the European Ceramic Society, 2012. 32(7): pp.1343-1347.
DOI: 10.1016/j.jeurceramsoc.2011.08.026
Google Scholar
[9]
C.J. Lee, D.J.K., Effect of a-Si3N4 Particle Size on the Microstructural Evolution of Si3N4 Ceramics. Journal of the American Ceramic Society, 1999. 82(3): pp.753-56.
DOI: 10.1111/j.1151-2916.1999.tb01828.x
Google Scholar
[10]
Seung Kun Lee, K.S.L., Brian R. Lawn, Effect of Starting Powder on Damage Resistance of Silicon Nitrides. Journal of the American Ceramic Society, 1998. 81(8): pp.2061-70.
DOI: 10.1111/j.1151-2916.1998.tb02588.x
Google Scholar
[11]
C.J. Lee, J.I.C., Deug J. Kim, Effect of b-Si3N4 starting powder size on elongated grain growth in β-Si3N4 ceramics. Journal of the European Ceramic Society, 2000. 20(2000): pp.2667-2671.
DOI: 10.1016/s0955-2219(00)00128-x
Google Scholar
[12]
J. Ma, L.C.L., Effect of particle size distribution on sintering of agglomerate-free submicron alumina powder compacts. Journal of the European Ceramic Society, 2002. 22(2002): pp.2197-2208.
DOI: 10.1016/s0955-2219(02)00009-2
Google Scholar
[13]
Chun, S., B. -K. Min, and S. Kim, Effects of milling media on the mechanical properties of gas pressure sintered α/β-SiAlON. Metals and Materials International, 2014. 20(6): pp.1011-1016.
DOI: 10.1007/s12540-014-6003-9
Google Scholar
[14]
Eskandari, A., et al., Effect of high energy ball milling on compressibility and sintering behavior of alumina nanoparticles. Ceramics International, 2012. 38(4): pp.2627-2632.
DOI: 10.1016/j.ceramint.2011.12.012
Google Scholar
[15]
Liu, X. -J., et al., Microstructure and mechanical properties of silicon nitride ceramics prepared by pressureless sintering with MgO–Al2O3–SiO2 as sintering additive. Journal of the European Ceramic Society, 2005. 25(14): pp.3353-3359.
DOI: 10.1016/j.jeurceramsoc.2004.08.025
Google Scholar
[16]
Kingery, W.D., Densification during Sintering in the Presence of a Liquid Phase. I. Theory. Journal of Applied Physics, 1959. 30(3): pp.301-306.
DOI: 10.1063/1.1735155
Google Scholar