Dielectric Breakdown and Failure of Ferroelectric Films as the Dielectric for Electrowetting Systems

Article Preview

Abstract:

In this paper, we study the electrical properties and breakdown phenomena of PZT ferroelectric thin film in electrowetting systems. The experimental results indicate that irreversible charge trapping occurred with repeated voltage actuation, resulting in contact angle relaxation and reduction of the ferroelectric film breakdown strength. The breakdown voltage depends on DC voltage polarity, and this polarity dependence was found to be related to the thickness of the ferroelectric layer. When AC voltage was applied, the breakdown voltage increased directly with voltage frequency. These phenomena are interpreted in terms of electrochemical reactions at the liquid/solid interface, an empirical model was used to estimate the amount of trapped charge in the ferroelectric film.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

231-234

Citation:

Online since:

July 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Mugele, and J.C. Baret, Electrowetting: from basics to applications, J. Phys.: Condens. Matter, 17 (2005) R705-R774.

DOI: 10.1088/0953-8984/17/28/r01

Google Scholar

[2] R.B. Fair, Digital microfluidics: is a true lab-on-a-chip possible, Microfluid. Nanofluid. 3 (2007) 245-281.

DOI: 10.1007/s10404-007-0161-8

Google Scholar

[3] C. Quilliet, and B. Berge, Electrowetting: A recent outbreak, Curr. Opin. Colloid Interface Sci., 6 (2001) 34-39.

DOI: 10.1016/s1359-0294(00)00085-6

Google Scholar

[4] M.G. Pollack, R.B. Fair, and A.D. Shenderov, Electrowetting-based actuation of liquid droplets for microfluidic applications, Appl. Phys. Lett. 77 (2000) 1725–1727.

DOI: 10.1063/1.1308534

Google Scholar

[5] J.K. Lee, K.W. Park, H.R. Kim, S.H. Kong, Dielectrically stabilized electrowetting on AF1600/Si3N4/TiO2 dielectric composite film, Sens. Actuators B: Chem. 160 (2011) 1593–1598.

DOI: 10.1016/j.snb.2011.09.074

Google Scholar

[6] W.Q. Wang, T.B. Jones, and D.R. Harding, On-chip double emulsion droplet assembly using electrowetting-on-dielectric and dielectrophoresis, Fusion Sci. Technol., 59 (2011) 240-249.

DOI: 10.13182/fst59-240

Google Scholar

[7] H. Moon, S.K. Cho, R.L. Garrell, C. -J. Kim, Low voltage electrowetting-on-dielectric, J. Appl. Phys. 92 (2002) 4080–4087.

DOI: 10.1063/1.1504171

Google Scholar

[8] Y. Li, W. Parkes, L.I. Haworth, et al., Anodic Ta2O5 for CMOS compatible low voltage electrowetting-on-dielectric device fabrication, Solid-State Electron. 52 (2008) 1382–1387.

DOI: 10.1016/j.sse.2008.04.030

Google Scholar

[9] Y.Y. Lin, E.R.F. Welch, R.B. Fair, Low voltage picoliter droplet manipulation utilizing electrowetting-on-dielectric platforms, Sens. Actuators B: Chem. 173 (2012) 338–345.

DOI: 10.1016/j.snb.2012.07.022

Google Scholar

[10] J. -H. Chang, D.Y. Choi, S. Han, J.J. Pak, Driving characteristics of the electrowetting-on-dielectric device using atomic-layer-deposited aluminum oxide as the dielectric, Microfluidics Nanofluidics, 8 (2009) 269–273.

DOI: 10.1007/s10404-009-0511-9

Google Scholar

[11] Z. -K. Xie, Z. -X. Yue, B. Peng, and L. Li, Effect of PbO excess on the microstructure, dielectric and piezoelectric properties, and energy-storage performance of Bi(Ni1/2Ti1/2)O3–PbTiO3 thin films, Jpn. J. Appl. Phys., 53 (2014) 08NA02.

DOI: 10.7567/jjap.53.08na02

Google Scholar

[12] Z. -K. Xie, Z. -X. Yue, G. Ruehl, et al., Bi(Ni1/2Zr1/2)O3-PbTiO3 relaxor-ferroelectric films for piezoelectric energy harvesting and electrostatic storage, Appl. Phys. Lett., 104 (2014), 243902.

DOI: 10.1063/1.4884427

Google Scholar

[13] Y. -Y. Lin, R.D. Evans, E. Welch, et al., Low voltage electrowetting-on-dielectric platform using multi-layer insulators, Sens. Actuators B: Chem. 150 (2010) 465–470.

DOI: 10.1016/j.snb.2010.06.059

Google Scholar