Effect of Defect Characteristics on the Color of BaTiO3-Based PTC Ceramic

Article Preview

Abstract:

The barium titanium based PTC ceramic with two kind of colors, light blue and yellow, were obtained by changing sintering processing. In order to reveal the relationship between color and electrical properties of the ceramics. The phase structure and microstructure of as synthesized samples were investigated by powder X-ray diffraction (XRD) and scanning electron microscopic (SEM) analysis. The micro area elements were characterized by electron probe micro-analyzer (EPMA) and x-ray photoelectron spectrometer (XPS). The thermo-sensitive properties were studied by resistance-temperature measurement system. The results reveal that two kinds of PTC ceramics have the same structure, similar elements, but different microstructure and valence concentration of titanium. It is suggested that difference of color of the PTC ceramics are originated from the defect concentration of titanium.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

243-247

Citation:

Online since:

July 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Heywang, H. Thomann. Electronic Ceramics [M], London and New York, (1991).

Google Scholar

[2] G. Arlt, D. Hennings, G. de, Dielectric properties of fine-grained barium titanate ceramics, J. Appl. Phys. 58 (1985) 1619-1625.

DOI: 10.1063/1.336051

Google Scholar

[3] D. Hennings, Barium titanate based ceramic materials for dielectric use, Int. J. High Tech. Ceram. 3 (1987) 91-111.

Google Scholar

[4] M. Kahn, Preparation of Small-Grained and Large-Grained Ceramics from Nd-Doped BaTiO3, J. Am. Ceram. Soc. 54 (1971) 452-454.

DOI: 10.1111/j.1151-2916.1971.tb12383.x

Google Scholar

[5] M. N. Rahaman, R. Manalert, Grain boundary mobility of BaTiO3 dopedwith aliovalent cations, J. Eur. Ceram. Soc. 18 (1998) 1063-1071.

DOI: 10.1016/s0955-2219(97)00215-x

Google Scholar

[6] S. K. Chiang, W. E. Lee, D. W. Readey, Core-Shell Structure in Doped BaTiO3, Am. Ceram. Bull. 66 (1987) 1230.

Google Scholar

[7] X. X. Wang, H. L. W. Chan, Positive temperature coefficient of resistivity effect in niobium-doped barium titanate ceramics obtained at low sintering temperature, J. Eur. Ceram. Soc. 24 (2004) 1227.

DOI: 10.1016/s0955-2219(03)00379-0

Google Scholar

[8] H. Takeda, Y. Hoshi, T. Kinoshita, et al., CFabrication of lead-free and high Tc BaTiO3-based thermistor ceramics using deoxidizing effect of oxygen-containing α-zirconium, Ceram. Int. 34 (2008) 2073-(2077).

DOI: 10.1016/j.ceramint.2007.08.009

Google Scholar

[9] Y. Pu, J. Wei, Y. Mao, J. Wang, Positive temperature coefficient of resistivity behavior of Niobium- doped (1−x)BaTiO3–xBi0. 5Li0. 5TiO3 ceramics, J. Alloy. Compd. 498 (2010) 5-7.

DOI: 10.1016/j.jallcom.2010.03.149

Google Scholar

[10] S. L. Jiang, Q. Jiang, H. B. Zhang, S. P. Gong, Study on BaTiO3 semiconducting ceramic materials with lower resistivity, J. Electroceramics. 21 (2008) 694-697.

DOI: 10.1007/s10832-007-9266-4

Google Scholar

[11] S. W. Ding, G. Jia, J. Wang, Z. Y. He, Electrical properties of Y-and Mn-doped BaTiO3-based PTC ceramics, Ceram. Int. 34 (2008) 2007-(2010).

DOI: 10.1016/j.ceramint.2007.07.023

Google Scholar

[12] I. H. Kim, H. W. Lee, Y. M. Kim, H. J. Kim, S. C. Ur, PTCR properties of Sb2O3-doped (Ba, Sr)TiO3, Mater. Let. 60 (2006) 3027-3030.

DOI: 10.1016/j.matlet.2006.02.037

Google Scholar

[13] W. R. Huo, Y. F. Qu, Effects of Bi1/2Na1/2TiO3 on the Curie temperature and the PTC effects of BaTiO3-based positive temperature coefficient ceramics, Sens. Actuators A. 128 (2006) 265-269.

DOI: 10.1016/j.sna.2006.01.022

Google Scholar

[14] Y. Pu, H. Wu, J. Wei, B. Wang, Influence of doping Nb5+ and Mn2+ on the PTCR effects of Ba0. 92Ca0. 05(Bi0. 5Na0. 5)0. 03TiO3 ceramics, J. Mater. Sci.: Mater. Electron. 22 (2011) 1479-1482.

DOI: 10.1007/s10854-011-0333-x

Google Scholar

[15] E. D. Macklen, Thermistors, Electrochemical Publications. (1979)188-217.

Google Scholar

[16] E. Brzozowski, M. S. Castro, Influence of Nb5+ and Sb3+ dopants on the defect profile, PTCR effect and GBBL characteristics of BaTiO3 ceramics, J. Eur. Ceram. Soc. 24 (2004) 2499-2507.

DOI: 10.1016/j.jeurceramsoc.2003.07.015

Google Scholar

[17] O. Saburi, Properties of semiconductive barium titanates, J. Phys. Soc. Jpn. 14 (1959) 1159-1174.

DOI: 10.1143/jpsj.14.1159

Google Scholar

[18] H. T. Langhammer, D. Makovec, Y. Pu, H. Abicht, M. Drofenik, Grain boundary reoxidation of donor-doped barium titanate ceramics, J. Eur. Ceram. Soc. 26 (2006) 2899-2907.

DOI: 10.1016/j.jeurceramsoc.2006.02.006

Google Scholar

[19] D. Makovec, Z. Samardžija, D. Kolar, Solid solubility of cerium in BaTiO3,J. Solid State Chem. 123 (1996) 30-38.

DOI: 10.1006/jssc.1996.0148

Google Scholar

[20] D. F. K. Hennings, B. Schreinemacher, H. Schreinemacher, High-permittivity dielectric ceramics with high endurance,J. Eur. Ceram. Soc. 13 (1994) 81-88.

DOI: 10.1016/0955-2219(94)90062-0

Google Scholar

[21] Y. Y. Lu, T. Y, Electrical characteristics of (Pb, Sr)TiO3 positive temperature coefficient ceramics, Mater. Chem. Phys. 53 (1998)132-137.

DOI: 10.1016/s0254-0584(97)02073-7

Google Scholar

[22] C. Rath, P. Mohanty, A. C. Pandey, N. C. Mishra, Oxygen vacancy induced structural phase transformation in TiO2 nanoparticles, J. Phys. D: Appl. Phys. 42 (2009) 205101.

DOI: 10.1088/0022-3727/42/20/205101

Google Scholar